544 research outputs found
The exploitation of Upogebia africana (Crustacea: Thalassinidae) for bait in the Knysna Estuary
The activities of people collecting Upogebia africana for bait at six popular collecting sites in the Knysna Estuary were monitored from February 1995 until April 1996. Three groups of bait harvesters were identified on the basis of their source of income: subsistence fishers who rely on bait collecting and fishing for their income; supplementary fishers who catch fish to supplement their income; leisure anglers who draw no income from fishing. Two groups of collectors were identified based on methods of collecting bait and fishing: leisure anglers who collect bait using a prawn pusher or pump and fish using a rod and tackle; non-leisure fishers who collect using tin cans and fish with hand or planted lines. The average harvest of bait per collecting trip by leisure anglers was 59 mud prawns, whereas non-leisure fishers took 101 animals, twice the legal limit. The numbers of bait collectors present per mud bank were found to be highest on public holidays ([horizontal bar over]X = 43.5) and higher during the summer holidays ([horizontal bar over]X = 16.5) than during the spring/summer ([horizontal bar over]X = 8.6) and autumn/winter ([horizontal bar over]X = 4.6) periods. Most collectors spent 11-30 minutes on the mud banks. It was estimated that 1.86 x 10[superscript 6] U. africana or about 740 kg (dry mass) was removed by bait collectors annually from the six bait-collecting sites studied. This represented about 8.5% of the mud prawn stocks at these sites and about 0.9% of the entire estuary stock. 85% of the mud prawns taken as bait was removed by 77% of the bait collectors who were the non-leisure fishers
An estimation of the standing stock and population structure of Upogebia africana (Crustacea: Thalassinidae) in the Knysna Estuary
Within the Knysna Estuary Upogebia africana has an extensive distribution from north of Leisure Isle to the Red Bridge, occupying 62% of the available intertidal zone. Six sites were surveyed within the above distributional range. U. africana was found from the high-water level (Spartina zone) to the shallow subtidal zone (to about 1.5 m depth). The density, biomass and population structure of the mud prawns were found to be highly variable within the estuary. Only small animals (carapace length âĂ = 10.9 mm) were found in the upper estuary at the Red Bridge. Although large animals were present, the Invertebrate Reserve had a low density and biomass of U. africana (â Ă = 11.7 mâ2; 3.9 g.mâ2 dry weight). By contrast a relatively inaccessible centre mud bank (Oyster Bank) in the middle reaches of the estuary had much larger populations (âĂ = 176.5 mâ2; 65.3 g.mâ2 dry weight). This site is, therefore, a natural mud prawn reserve. Within the intertidal zone, mud prawn density (74â76 mâ2) and biomass (26â27 g.mâ2 dry weight) was usually greatest in the Spartina and lower Zostera zones. Sex ratios throughout the estuary did not deviate significantly from 1:1
Kinetic models of tangential discontinuities in the solar wind
TN acknowledges financial support by the UK's Science and Technology Facilities Council (STFC) via Consolidated Grant ST/S000402/1. OA was supported by the Natural Environment Research Council (NERC) Highlight Topic Grant #NE/P017274/1 (Rad-Sat).Kinetic-scale current sheets observed in the solar wind are frequently approximately force-free despite the fact that their plasma β is of the order of one. In-situ measurements have recently shown that plasma density and temperature often vary across the current sheets, while the plasma pressure is approximately uniform. In many cases these density and temperature variations are asymmetric with respect to the center of the current sheet. To model these observations theoretically we develop in this paper equilibria of kinetic-scale force-free current sheets that have plasma density and temperature gradients. The models can also be useful for analysis of stability and dissipation of the current sheets in the solar wind.PostprintPeer reviewe
On the Two Approaches to Incorporate WaveâParticle Resonant Effects Into Global Test Particle Simulations
Energetic electron dynamics in the Earth's radiation belts and near-Earth plasma sheet are controlled by multiple processes operating on very different time scales: from storm-time magnetic field reconfiguration on a timescale of hours to individual resonant wave-particle interactions on a timescale of milliseconds. The most advanced models for such dynamics either include test particle simulations in electromagnetic fields from global magnetospheric models, or those that solve the Fokker-Plank equation for long-term effects of wave-particle resonant interactions. The most prospective method, however, would be to combine these two classes of models, to allow the inclusion of resonant electron scattering into simulations of electron motion in global magnetospheric fields. However, there are still significant outstanding challenges that remain regarding how to incorporate the long term effects of wave-particle interactions in test-particle simulations. In this paper, we describe in details two approaches that incorporate electron scattering in test particle simulations: stochastic differential equation (SDE) approach and the mapping technique. Both approaches assume that wave-particle interactions can be described as a probabilistic process that changes electron energy, pitch-angle, and thus modifies the test particle dynamics. To compare these approaches, we model electron resonant interactions with field-aligned whistler-mode waves in dipole magnetic fields. This comparison shows advantages of the mapping technique in simulating the nonlinear resonant effects, but also underlines that more significant computational resources are needed for this technique in comparison with the SDE approach. We further discuss applications of both approaches in improving existing models of energetic electron dynamics
Longitudinal assessments highlight long-term behavioural recovery in disorders of consciousness.
Accurate diagnosis and prognosis of disorders of consciousness is complicated by the variability amongst patients' trajectories. However, the majority of research and scientific knowledge in this field is based on cross-sectional studies. The translational gap in applying this knowledge to inform clinical management can only be bridged by research that systematically examines follow-up. In this study, we present findings from a novel longitudinal study of the long-term recovery trajectory of 39 patients, repeatedly assessed using the Coma Recovery Scale-Revised once every 3âmonths for 2âyears, generating 185 assessments. Despite the expected inter-patient variability, there was a statistically significant improvement in behaviour over time. Further, improvements began approximately 22âmonths after injury. Individual variation in the trajectory of recovery was influenced by initial diagnosis. Patients with an initial diagnosis of unresponsive wakefulness state, who progressed to the minimally conscious state, did so at a median of 485âdays following onset-later than 12-month period after which current guidelines propose permanence. Although current guidelines are based on the expectation that patients with traumatic brain injury show potential for recovery over longer periods than those with non-traumatic injury, we did not observe any differences between trajectories in these two subgroups. However, age was a significant predictor, with younger patients showing more promising recovery. Also, progressive increases in arousal contributed exponentially to improvements in behavioural awareness, especially in minimally conscious patients. These findings highlight the importance of indexing arousal when measuring awareness, and the potential for interventions to regulate arousal to aid long-term behavioural recovery in disorders of consciousness
Bedside EEG predicts longitudinal behavioural changes in disorders of consciousness.
Providing an accurate prognosis for prolonged disorder of consciousness (pDOC) patients remains a clinical challenge. Large cross-sectional studies have demonstrated the diagnostic and prognostic value of functional brain networks measured using high-density electroencephalography (hdEEG). Nonetheless, the prognostic value of these neural measures has yet to be assessed by longitudinal follow-up. We address this gap by assessing the utility of hdEEG to prognosticate long-term behavioural outcome, employing longitudinal data collected from a cohort of patients assessed systematically with resting hdEEG and the Coma Recovery Scale-Revised (CRS-R) at the bedside over a period of two years. We used canonical correlation analysis to relate clinical (including CRS-R scores combined with demographic variables) and hdEEG variables to each other. This analysis revealed that the patient's age, and the hdEEG theta band power and alpha band connectivity, contributed most significantly to the relationship between hdEEG and clinical variables. Further, we found that hdEEG measures recorded at the time of assessment augmented clinical measures in predicting CRS-R scores at the next assessment. Moreover, the rate of hdEEG change not only predicted later changes in CRS-R scores, but also outperformed clinical measures in terms of prognostic power. Together, these findings suggest that improvements in functional brain networks precede changes in behavioural awareness in pDOC. We demonstrate here that bedside hdEEG assessments conducted at specialist nursing homes are feasible, have clinical utility, and can complement clinical knowledge and systematic behavioural assessments to inform prognosis and care
Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: the Gold-Hoyle model in a background field
We calculate exact one-dimensional collisionless plasma equilibria for a continuum of flux tube models, for which the total magnetic field is made up of the âforce-freeâ Gold-Hoyle magnetic flux tube embedded in a uniform and anti-parallel background magnetic field. For a sufficiently weak background magnetic field, the axial component of the total magnetic field reverses at some finite radius. The presence of the background magnetic field means that the total system is not exactly force-free, but by reducing its magnitude, the departure from force-free can be made as small as desired. The distribution function for each species is a function of the three constants of motion; namely, the Hamiltonian and the canonical momenta in the axial and azimuthal directions. Poisson's equation and Ampère's law are solved exactly, and the solution allows either electrically neutral or non-neutral configurations, depending on the values of the bulk ion and electron flows. These equilibria have possible applications in various solar, space, and astrophysical contexts, as well as in the laboratory
An exact collisionless equilibrium for the force-free Harris sheet with low plasma beta
We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution
Fractal dimension of cortical functional connectivity networks & severity of disorders of consciousness.
Recent evidence suggests that the quantity and quality of conscious experience may be a function of the complexity of activity in the brain and that consciousness emerges in a critical zone between low and high-entropy states. We propose fractal shapes as a measure of proximity to this critical point, as fractal dimension encodes information about complexity beyond simple entropy or randomness, and fractal structures are known to emerge in systems nearing a critical point. To validate this, we tested several measures of fractal dimension on the brain activity from healthy volunteers and patients with disorders of consciousness of varying severity. We used a Compact Box Burning algorithm to compute the fractal dimension of cortical functional connectivity networks as well as computing the fractal dimension of the associated adjacency matrices using a 2D box-counting algorithm. To test whether brain activity is fractal in time as well as space, we used the Higuchi temporal fractal dimension on BOLD time-series. We found significant decreases in the fractal dimension between healthy volunteers (n = 15), patients in a minimally conscious state (n = 10), and patients in a vegetative state (n = 8), regardless of the mechanism of injury. We also found significant decreases in adjacency matrix fractal dimension and Higuchi temporal fractal dimension, which correlated with decreasing level of consciousness. These results suggest that cortical functional connectivity networks display fractal character and that this is associated with level of consciousness in a clinically relevant population, with higher fractal dimensions (i.e. more complex) networks being associated with higher levels of consciousness. This supports the hypothesis that level of consciousness and system complexity are positively associated, and is consistent with previous EEG, MEG, and fMRI studies
Recommended from our members
Methylphenidate-mediated motor control network enhancement in patients with traumatic brain injury.
PRIMARY OBJECTIVE: To investigate functional improvement late (>6Â months) after traumatic brain injury (TBI). To this end, we conducted a double-blind, placebo-controlled experimental medicine study to test the hypothesis that a widely used cognitive enhancer would benefit patients with TBI. RESEARCH DESIGN: We focused on motor control function using a sequential finger opposition fMRI paradigm in both patients and age-matched controls. METHODS AND PROCEDURES: Patients' fMRI and DTI scans were obtained after randomised administration of methylphenidate or placebo. Controls were scanned without intervention. To assess differences in motor speed, we compared reaction times from the baseline condition of a sustained attention task. MAIN OUTCOMES AND RESULTS: Patients' reaction times correlated with wide-spread motor-related white matter abnormalities. Administration of methylphenidate resulted in faster reaction times in patients, which were not significantly different from those achieved by controls. This was also reflected in the fMRI findings in that patients on methylphenidate activated the left inferior frontal gyrus significantly more than when on placebo. Furthermore, stronger functional connections between pre-/post-central cortices and cerebellum were noted for patients on methylphenidate. CONCLUSIONS: Our findings suggest that residual functionality in patients with TBI may be enhanced by a single dose of methylphenidate.The study was funded by the Evelyn Trust- grant number 06/20. C.D. was funded by the Clinical Academic Research Awards organized by the East of England Multi Professional Deanery. B.J.S. consults for Cambridge Cognition, Otsuka, Servier and Lundbeck. She holds a grant from Janssen/J&J and has share options in Cambridge Cognition. D.K.M. is supported by the Neuroscience Theme of the NIHR Cambridge Biomedical Research Centre and NIHR Senior Investigator awards, and by Framework Program 7 funding from the European Commission (TBIcare). He has received lecture and consultancy fees and support for research from Glaxo SmithKline, Solvay and Linde. E.A.S. is funded by the Stephen Erskine Fellowship, Queens' College, Cambridge, UK
- âŚ