1,718 research outputs found

    Automatic electrical stimulation of abdominal wall muscles increases tidal volume and cough peak flow in tetraplegia

    Get PDF
    <p>Paralysis of the respiratory muscles in people with tetraplegia affects their ability to breathe and contributes to respiratory complications. Surface functional electrical stimulation (FES) of abdominal wall muscles can be used to increase tidal volume (V_{T}) and improve cough peak flow (CPF) in tetraplegic subjects who are able to breathe spontaneously.</p> <p>This study aims to evaluate the feasibility and effectiveness of a novel abdominal FES system which generates stimulation automatically, synchronised with the subjects' voluntary breathing activity. Four subjects with complete tetraplegia (C4-C6), breathing spontaneously, were recruited.</p> <p>The automatic stimulation system ensured that consistent stimulation was achieved. We compared spirometry during unassisted and FES-assisted quiet breathing and coughing, and measured the effect of stimulation on end-tidal CO_2 (EtCO_2) during quiet breathing.</p> <p>The system dependably recognised spontaneous respiratory effort, stimulating appropriately, and was well tolerated by patients. Significant increases in V_T during quiet breathing (range 0.05–0.23 L) and in CPF (range 0.04–0.49 L/s) were observed. Respiratory rate during quiet breathing decreased in all subjects when stimulated, whereas minute ventilation increased by 1.05–2.07 L/min. The changes in EtCO_2 were inconclusive.</p> <p>The automatic stimulation system augmented spontaneous breathing and coughing in tetraplegic patients and may provide a potential means of respiratory support for tetraplegic patients with reduced respiratory capacity.</p&gt

    Abdominal functional electrical stimulation to enhance mechanical insufflation-exsufflation

    Get PDF
    Context: Respiratory complications, attributed to the build-up of secretions in the airway, are a leading cause of rehospitalisation for the tetraplegic population. Previously, we observed that the application of Abdominal Functional Electrical Stimulation (AFES) improved cough function and increased demand for secretion removal, suggesting AFES may aid secretion clearance. Clinically, secretion clearance is commonly achieved by using Mechanical insufflation-exsufflation (MI-E) to simulate a cough. In this study the feasibility of combining AFES with MI-E is evaluated. Findings: AFES was successfully combined with MI-E at eight fortnightly assessment sessions conducted with one sub-acute participant with tetraplegia. By using the signal from a pressure sensor, integrated with the MI-E device, AFES was correctly applied in synchrony with MI-E with an accuracy of 96.7%. Acute increases in exhaled volume and peak flow were observed during AFES assisted MI-E, compared to MI-E alone, at six of eight assessment sessions. Conclusion: The successful integration of AFES with MI-E at eight assessment sessions demonstrates the feasibility of this technique. The acute increases in respiratory function observed at the majority of assessment sessions generate the hypothesis that AFES assisted MI-E may be more effective for secretion clearance than MI-E alone

    Arm-cranking exercise assisted by Functional Electrical Stimulation in C6 tetraplegia: a pilot study

    Get PDF
    Tetraplegic volunteers undertook progressive exercise training, using novel systems for arm-cranking exercise assisted by Functional Electrical Stimulation (FES). The main aim was to determine potential training effects of FES-assisted arm-crank ergometry (FES-ACE) on upper limb strength and cardiopulmonary {fitness} in tetraplegia. Surface FES was applied to the biceps and triceps during exercise on an instrumented ergometer. Two tetraplegic volunteers with C6 Spinal Cord Injury (SCI) went through muscle strengthening, baseline exercise testing and three months of progressive FES-ACE training. Repeat exercise tests were carried out every four weeks during training, and post-training, to monitor upper-limb strength and cardiopulmonary fitness. At each test point, an incremental test was carried out to determine peak work rate, peak oxygen uptake, gas exchange threshold and oxygen uptake-work rate relationship during FES-ACE. Peak oxygen uptake for Subject A increased from 0.7 l/min to 1.1 l/min, and peak power output increased from 7 W to 38 W after FES-ACE training. For Subject B, peak oxygen uptake was unchanged, but peak power output increased from 3 W to 8 W. These case studies illustrate potential benefits of FES-ACE in tetraplegia, but also the differences in exercise responses between individuals. Keywords: electrical stimulation; spinal cord injury; cardiopulmonary fitness; rehabilitation; tetraplegi

    A model for incorporating a clinically-feasible exercise test in paraplegic annual reviews : a tool for stratified cardiopulmonary stress performance classification and monitoring

    Get PDF
    To identify and characterize an exercise test for use in routine spinal cord injury clinical review, and (ii) to describe levels of, and factors affecting, cardiopulmonary stress performance during exercise in the chronic paraplegic population in Scotland, UK. Cross-sectional study Queen Elizabeth National Spinal Injuries Unit (Glasgow, Scotland) 48 subjects with chronic paraplegia resulting from spinal cord injury at neurological levels T2-L2 Peak oxygen uptake, peak power output, gas exchange threshold and peak heart rate were determined from an incremental arm-cranking exercise test. Using a general linear model, the effects of gender, high (injury level above T6) versus low paraplegia, time since injury, body mass and age on peak oxygen uptake and peak power output were investigated. All 48 subjects completed the arm-cranking exercise test, which was shown to be practical for fitness screening in paraplegia. Men (n=38) had a peak oxygen uptake of 1.302 +/- 0.326 l.min-1 (mean +/- s.d.) and peak power output of 81.6 +/- 23.2W, which was significantly higher than for women (n=10), at 0.832 +/- 0.277 l.min-1 and 50.1 +/- 27.8 W, respectively. There was large intersubject variability in cardiopulmonary performance during arm-cranking exercise testing, but the overall mean for the Scottish population was lower than reference values from other countries. Arm-cranking exercise tests are feasible in the clinical environment. The motivation for their implementation is threefold: (i) to determine cardiopulmonary stress performance of individual paraplegic patients, (ii) to stratify patients into cardiovascular risk categories, and (iii) to monitor the effects of targeted exercise prescription

    An alternative synthesis of cycloalkyl-substituted CPA catalysts and application in asymmetric protonation reactions

    Get PDF
    LAM thanks the EPSRC (grant number EP/S027165/1) for postdoctoral funding.An alternative synthesis of cycloalkyl-substituted CPA catalysts is reported. A Negishi coupling offers improved yields and purity of the necessary 1,3,5-tri(cycloalkyl)benzenes. Limitations in the use of commercial organozinc reagents have been identified and a robust procedure for the preparation of these reagents is detailed. Similarly, a robust procedure for the key Kumada coupling is also provided. The route is demonstrated by preparation of three different tri(cycloalkyl)aryl-substituted CPAs and the utility of these catalysts in asymmetric protonation reactions is shown.Publisher PDFPeer reviewe

    Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: a cohort study

    Get PDF
    Background Severe impairment of the major respiratory muscles resulting from tetraplegia reduces respiratory function, causing many people with tetraplegia to require mechanical ventilation during the acute stage of injury. Abdominal Functional Electrical Stimulation (AFES) can improve respiratory function in non-ventilated patients with sub-acute and chronic tetraplegia. The aim of this study was to investigate the clinical feasibility of using an AFES training program to improve respiratory function and assist ventilator weaning in acute tetraplegia.<p></p> Methods AFES was applied for between 20 and 40 minutes per day, five times per week on four alternate weeks, with 10 acute ventilator dependent tetraplegic participants. Each participant was matched retrospectively with a ventilator dependent tetraplegic control, based on injury level, age and sex. Tidal Volume (VT) and Vital Capacity (VC) were measured weekly, with weaning progress compared to the controls.<p></p> Results Compliance to training sessions was 96.7%. Stimulated VT was significantly greater than unstimulated VT. VT and VC increased throughout the study, with mean VC increasing significantly (VT: 6.2 mL/kg to 7.8 mL/kg VC: 12.6 mL/kg to 18.7 mL/kg). Intervention participants weaned from mechanical ventilation on average 11 (sd: ± 23) days faster than their matched controls.<p></p> Conclusion The results of this study indicate that AFES is a clinically feasible technique for acute ventilator dependent tetraplegic patients and that this intervention may improve respiratory function and enable faster weaning from mechanical ventilation.<p></p&gt

    The Generation and Properties of Tetrahedral Intermediates

    Get PDF
    The study of "tetrahedral intermediates" is reviewed. Studies by proton nuclear magnetic resonance spectroscopy (N.M.R.), of several ortho ester derivatives (acetoxy-dime-thoxy-methane, acetoxy-diethoxy-methane, 2-acetoxy-1,3-dioxolan, 2-acetoxy-4,4,5,5-tetramethyl-1,3-dioxolan and 2-chloroacetoxy-4,4,5,5-tetramethyl-1,3-dioxolan) have shown the existence of the postulated tetrahedral intermediates likely to be obtained from loss of the acetoxy or chloroacetoxy group followed by reaction with water. These intermediates have been shown to be observable over long periods at low temperatures and the rate constants for their decomposition have been calculated. The observation of one intermediate, 2-hydroxy-4,4,5,5-tetramethyl-1,3-dioxolan has also been carried out using 13C N.M.R. Attempts to synthesise other acetoxy species and other possible precursors (phenoxy and p-nitro-phenoxy derivatives, etc.) have all met with failure. Studies on the hydrolyses of other compounds have not resulted in the detection of any tetrahedral intermediates. Also no intermediates were detected in the reactions of various carbenium salts. The hydrolyses of 2,2-dimethoxytetrahydropyran and 2,2-diethoxytetrahydropyran yield delta-valerolactone, the alcohol (methanol or ethanol) and methyl or ethyl 5-hydroxyvalerate, indicating that the reaction is not specific as thought by Deslongchamps. The kinetics of the hydrolysis of benzaldehyde di-t-butyl acetal and alpha-acetoxy-alpha-t-butoxy-toluene has been studied in several acetate and one imidazole buffers. Both have been shown to hydrolyse by rate limiting decomposition of the hemiacetal at low pH by general buffer catalysis. Whereas no change in the rate determining step is observed for alpha-acetoxy-alpha-t-butoxy-toluene the hydrolysis of benzaldehyde di-t-butyl acetal shows complex two step kinetics (i.e. an induction period) over a very large pH range (ca 4-7) with a change in the rate determining step to hydrolysis of the acetal. No general buffer catalysis was observed at the higher pHs in the buffer used (imidazole)

    Predicting patient-specific rates of bone loss at fracture-prone sites after spinal cord injury

    Get PDF
    People with spinal cord injury (SCI) experience bone loss and have an elevated rate of fracture in the paralysed limbs. The literature suggests an exponential time course of bone loss after SCI, but true rates may vary between patients. We propose systematic evaluation of bone status in the early stages of SCI to identify fast bone losers. A case series of six patients with complete SCI were scanned using peripheral quantitative computed tomography within 5 weeks and at 4, 8 and 12 months post-injury. Bone mineral density (BMD) and bone mineral content (BMC) were measured at fracture-prone sites in the tibia and femur. Patient-specific-predictions (PSP) of expected rates of bone loss were produced by individualising published model equations according to each patient’s measured values at baseline. Wilcoxon Signed-Rank tests were used to identify changes between time-points; chi-squared tests for differences between measured and PSP values. In the lower limbs, mean values decreased significantly between baseline and 8 months post-injury, by 19–31% for trabecular BMD, 21–32% for total BMD, and 9–29% for BMC. Most subjects showed no significant differences between PSP and measured values, but individuals with significantly faster rates of bone loss than predicted should be investigated further. There was considerable intersubject variability in rates of bone loss after SCI. Patients showing the fastest bone loss could benefit from continued follow-up and possibly treatment

    Mild inflammation causes a reduction in resting-state amplitude of low-frequency fluctuation in healthy adult males

    Get PDF
    Systemic inflammation has been associated with negative mood states and human sickness behaviour. Previous studies have shown an association between systemic inflammation and changes in task-related blood-oxygen-level-dependent activity and functional connectivity within large-scale networks. However, no study has examined the effect of inflammation on the magnitude of blood-oxygen-level-dependent low-frequency fluctuations at rest. We used a double-blind placebo-controlled crossover design to randomise 20 male subjects (aged 20–50 years) to receive either a Salmonella typhi vaccine or a placebo saline injection at two separate sessions. All participants underwent a resting-state functional magnetic resonance scan and a measure of inflammation (interleukin 6) and mood (Profile of Mood States) 3 h after injection. We compared the whole brain amplitude of low-frequency fluctuations between the vaccine and placebo conditions using a repeated measures design. Vaccine condition was associated with greater interleukin 6 levels (p < 0.001). Vaccine condition was also associated with lower amplitude of low-frequency fluctuations in the right and left frontal pole, superior frontal gyrus, paracingulate gyrus (Cluster 1) and the right mid and inferior frontal gyrus (Cluster 2) (p < 0.001, false discovery rate corrected). Lower amplitude of low-frequency fluctuations pertaining to first cluster correlated with greater total Profile of Mood States score (worse mood) (r = −0.38; p = 0.04). These results imply possible excitation/inhibition imbalance mechanisms during inflammation that may be a relevant target in psychiatric disease, especially mood disorders

    Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury

    Get PDF
    Background: Disuse osteoporosis occurs in response to long-term immobilization. Spinal cord injury (SCI) leads to a form of disuse osteoporosis that only affects the paralyzed limbs. High rates of bone resorption after injury are evident from decreases in bone mineral content (BMC), which in the past have been attributed in the main to loss of trabecular bone in the epiphyses and cortical thinning in the shaft through endocortical resorption. Methods: Patients with motor-complete SCI recruited from the Queen Elizabeth National Spinal Injuries Unit (Glasgow, UK) were scanned within 5. weeks of injury (baseline) using peripheral Quantitative Computed Tomography (pQCT). Unilateral scans of the tibia, femur and radius provided separate estimates of trabecular and cortical bone parameters in the epiphyses and diaphyses, respectively. Using repeat pQCT scans at 4, 8 and 12. months post-injury, changes in BMC, bone mineral density (BMD) and cross-sectional area (CSA) of the bone were quantified. Results: Twenty-six subjects (5 female, 21 male) with SCI (12 paraplegic, 14 tetraplegic), ranging from 16 to 76. years old, were enrolled onto the study. Repeated-measures analyses showed a significant effect of time since injury on key bone parameters at the epiphyses of the tibia and femur (BMC, total BMD, trabecular BMD) and their diaphyses (BMC, cortical BMD, cortical CSA). There was no significant effect of gender or age on key outcome measures, but there was a tendency for the female subjects to experience greater decreases in cortical BMD. The decreases in cortical BMD in the tibia and femur were found to be statistically significant in both men and women. Conclusions: By carrying out repeat pQCT scans at four-monthly intervals, this study provides a uniquely detailed description of the cortical bone changes that occur alongside trabecular bone changes in the first year of complete SCI. Significant decreases in BMD were recorded in both the cortical and trabecular bone compartments of the tibia and femur throughout the first year of injury. This study provides evidence for the need for targeted early intervention to preserve bone mass within this patient group
    corecore