23 research outputs found

    Recent developments in organoboron chemistry - old dogs, new tricks

    Get PDF
    Organoboron reagents have been synonymous with organic chemistry for over half a century and continue to see widespread application today; for example, classic reactions such as hydroboration and Suzuki-Miyaura cross-coupling are regularly practiced throughout the chemical community. In particular, applications of organoboron compounds have underpinned pharmaceutical and agrochemical development on both discovery and process scales for decades. Although it is noteworthy that these seminal reactions have stood the test of time, continually increasing pressure to improve efficiency in chemical synthesis demands innovation. Over the past few years, through an explosion in the number of new methods for the installation and manipulation of organoboron functional groups, as well as the understanding of their mechanistic operation, organoboron chemistry has risen to this challenge

    A one-pot tandem chemoselective allylation/cross-coupling via temperature control of a multi-nucleophile/electrophile system

    Get PDF
    A chemoselective tandem reaction of a multi-reactive, two electrophile + two nucleophile, system is reported. An allylation/cross-coupling process of a haloaryl aldehyde, an aryl BPin, and an allyl BPin can be controlled using a temperature gradient to overcome natural reactivity profiles and allow two sequential chemoselective C–C bond formations without intervention. This process offers efficient access to an array of functionalised products including pharmaceutical and natural product scaffolds

    Charge Transfer Reactions

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Boron complexes in organic synthesis

    No full text
    This article focuses on contemporary applications of boron complexes in organic synthesis—where the unique reactivity of B-containing reagents or catalysts is integral to a synthetic purpose. The coverage includes major developments and new research areas such as transition metal-free borylation and cross-coupling processes, photoredox methodologies, the emergence of catalytic processes using B-containing catalysts, and the advances made in the use of metalate and boryl anion strategies

    Boron complexes in organic synthesis

    No full text
    This article focuses on contemporary applications of boron complexes in organic synthesis—where the unique reactivity of B-containing reagents or catalysts is integral to a synthetic purpose. The coverage includes major developments and new research areas such as transition metal-free borylation and cross-coupling processes, photoredox methodologies, the emergence of catalytic processes using B-containing catalysts, and the advances made in the use of metalate and boryl anion strategies

    A modular synthesis of functionalised phenols enabled by controlled boron speciation

    Get PDF
    A modular synthesis of functionalised biaryl phenols from two boronic acid derivatives has been developed via one-pot Suzuki-Miyaura cross-coupling, chemoselective control of boron solution speciation to generate a reactive boronic ester in situ, and oxidation. The utility of this method has been further demonstrated by application in the synthesis of drug molecules and components of organic electronics, as well as within iterative cross-coupling

    A modular synthesis of functionalised phenols enabled by controlled boron speciation

    No full text
    A modular synthesis of functionalised biaryl phenols from two boronic acid derivatives has been developed via one-pot Suzuki-Miyaura cross-coupling, chemoselective control of boron solution speciation to generate a reactive boronic ester in situ, and oxidation. The utility of this method has been further demonstrated by application in the synthesis of drug molecules and components of organic electronics, as well as within iterative cross-coupling
    corecore