8,373 research outputs found
Modelling and simulation framework for reactive transport of organic contaminants in bed-sediments using a pure java object - oriented paradigm
Numerical modelling and simulation of organic contaminant reactive transport in the environment is being increasingly
relied upon for a wide range of tasks associated with risk-based decision-making, such as prediction of contaminant
profiles, optimisation of remediation methods, and monitoring of changes resulting from an implemented remediation
scheme. The lack of integration of multiple mechanistic models to a single modelling framework, however, has
prevented the field of reactive transport modelling in bed-sediments from developing a cohesive understanding of
contaminant fate and behaviour in the aquatic sediment environment. This paper will investigate the problems involved
in the model integration process, discuss modelling and software development approaches, and present preliminary
results from use of CORETRANS, a predictive modelling framework that simulates 1-dimensional organic contaminant
reaction and transport in bed-sediments
EPR and ferromagnetism in diluted magnetic semiconductor quantum wells
Motivated by recent measurements of electron paramagnetic resonance (EPR)
spectra in modulation-doped CdMnTe quantum wells, [F.J. Teran {\it et al.},
Phys. Rev. Lett. {\bf 91}, 077201 (2003)], we develop a theory of collective
spin excitations in quasi-two-dimensional diluted magnetic semiconductors
(DMSs). Our theory explains the anomalously large Knight shift found in these
experiments as a consequence of collective coupling between Mn-ion local
moments and itinerant-electron spins. We use this theory to discuss the physics
of ferromagnetism in (II,Mn)VI quantum wells, and to speculate on the
temperature at which it is likely to be observed in n-type modulation doped
systems.Comment: 4 pages, 1 figur
Lionfish misidentification circumvents an optimised escape response by prey
Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish (Pterois volitans) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel (Pomacentrus chrysurus), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Faststart responses were compared with prey forewarned of a predatory rockcod (Cephalopholis microprion), a corallivorous butterflyfish (Chaetodon trifasctiatus) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and nonpredatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators
Generalized Holstein-Primakoff Squeezed States for SU(n)
We show how to define multi-photon, many-mode squeezed states for SU(n), using a generalized Holstein-Primakoff realization. We prove that for the class of realizations given, the resulting squeezing reduces to that of SU(2), and exemplify with a specific calculation for SU(3)
Characterisation of the L-mode Scrape Off Layer in MAST: decay lengths
This work presents a detailed characterisation of the MAST Scrape Off Layer
in L-mode. Scans in line averaged density, plasma current and toroidal magnetic
field were performed. A comprehensive and integrated study of the SOL was
allowed by the use of a wide range of diagnostics. In agreement with previous
results, an increase of the line averaged density induced a broadening of the
midplane density profile.Comment: 30 pages, 11 figure
Simultaneous two component squeezing in generalized q-coherent states
Using a generalization of the q-commutation relations, we develop a formalism in which it is possible to define generalized q-bosonic operators. This formalism includes both types of the usual q-deformed bosons as special cases. The coherent states of these operators show interesting and novel noise reduction properties including simultaneous squeezing in both field components, unlike the conventional case in which squeezing is permitted in only one component. This also contrasts with the usual quantum group deformation which also only permits one component squeezing
Coherent pairing states for the Hubbard model
We consider the Hubbard model and its extensions on bipartite lattices. We
define a dynamical group based on the -pairing operators introduced by
C.N.Yang, and define coherent pairing states, which are combinations of
eigenfunctions of -operators. These states permit exact calculations of
numerous physical properties of the system, including energy, various
fluctuations and correlation functions, including pairing ODLRO to all orders.
This approach is complementary to BCS, in that these are superconducting
coherent states associated with the exact model, although they are not
eigenstates of the Hamiltonian.Comment: 5 pages, RevTe
Design aspects of explosive mixtures in a vehcile interstage final report
Prevention and control of explosive mixture of hydrogen and oxygen within vehicle interstag
Cosmic Ray Propagation: Nonlinear Diffusion Parallel and Perpendicular to Mean Magnetic Field
We consider the propagation of cosmic rays in turbulent magnetic fields. We
use the models of magnetohydrodynamic turbulence that were tested in numerical
simulations, in which the turbulence is injected on large scale and cascades to
small scales. Our attention is focused on the models of the strong turbulence,
but we also briefly discuss the effects that the weak turbulence and the slab
Alfv\'enic perturbations can have. The latter are likely to emerge as a result
of instabilities with in the cosmic ray fluid itself, e.g., beaming and
gyroresonance instabilities of cosmic rays. To describe the interaction of
cosmic rays with magnetic perturbations we develop a non-linear formalism that
extends the ordinary Quasi-Linear Theory (QLT) that is routinely used for the
purpose. This allows us to avoid the usual problem of 90 degree scattering and
enable our computation of the mean free path of cosmic rays. We apply the
formalism to the cosmic ray propagation in the galactic halo and in the Warm
Ionized medium (WIM). In addition, we address the issue of the transport of
cosmic rays perpendicular to the mean magnetic field and show that the issue of
cosmic ray subdiffusion (i.e., propagation with retracing the trajectories
backwards, which slows down the diffusion) is only important for restricted
cases when the ambient turbulence is far from what numerical simulations
suggest to us. As a result, this work provides formalism that can be applied
for calculating cosmic ray propagation in a wide variety of circumstances.Comment: minor changes, accepted to Ap
Sweetclover on Iowa Farms
During the past 30 years sweetclover has changed from its lowly position as a roadside weed to a respectable place among farm crops. The rise in importance of this crop has been the direct result of the realization that sweetclover fills a most important role in building and maintaining our soils—making possible large yields of corn, soybeans and other crops
- …