4,836 research outputs found

    Recommender Systems For Computer Tailored Health Communications

    Get PDF
    Presentation on the development of a recommender system for a computer-tailored health communications tool that assists with helping tobacco users to quit smoking. This presentation was part of the retreat mini-symposium entitled: Smartphones, Sensors, and Social Networks: The New Tools of Health Behavior Change

    Theology, News and Notes - Vol. 22, No. 05

    Get PDF
    Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1055/thumbnail.jp

    Theology, News and Notes - Vol. 11, No. 03

    Get PDF
    Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1188/thumbnail.jp

    Evidence for Unusually Strong Near-field Ground Motion on the Hanging Wall of the San Fernando Fault during the 1971 Earthquake

    Get PDF
    Reports of unusually intense ground motions in the very near fields of faults that have ruptured during earthquakes are becoming more common, particularly with the markedly increased worldwide strong-motion instrumentation in recent years (e.g., Heaton and Wald, 1994). The reported ground motions are sufficiently strong to have significant potential engineering impact (Hall et al., 1995). In addition to fault proximity, two other factors that have contributed to unusually high strong motions are rupture directivity (e.g., Somerville et al., 1997) and locations on the hanging walls of thrust faults (e.g., Nason, 1973; Abrahamson and Somerville, 1996; Brune, 1996a; Brune, 1996b). Perhaps nowhere has the sharp distinction between damage on the hanging wall and footwall of a thrust fault been more dramatically documented than during the 1945 Mikawa earthquake, Japan (Iida, 1985)

    Study of diffusion weighted MRI as a predictive biomarker of response during radiotherapy for high and intermediate risk squamous cell cancer of the oropharynx: The MeRInO study

    Get PDF
    Introduction and background: A significant proportion of patients with intermediate and high risk squamous cell cancer of the oropharynx (OPSCC) continue to relapse locally despite radical chemoradiotherapy (CRT). The toxicity of the current combination of intensified dose per fraction radiotherapy and platinum based chemotherapy limits further uniform intensification. If a predictive biomarker for outcomes from CRT can be identified during treatment then individualised and adaptive treatment strategies may be employed. Methods/design: The MeRInO study is a prospective observational imaging study of patients with intermediate and high risk, locally advanced OPSCC receiving radical RT or concurrent CRT Patients undergo diffusion weighted MRI prior to treatment (MRI_1) and during the third week of RT (MRI_2). Apparent diffusion coefficient (ADC) measurements will be made on each scan for previously specified target lesions (primary and lymph nodes) and change in ADC calculated. Patients will be followed up and disease status for each target lesion noted. The primary aim of the MeRInO study is to determine the threshold change in ADC from baseline to week 3 of RT that may identify the sub-group of non-responders during treatment. Discussion: The use of DW-MRI as a predictive biomarker during RT for SCC H&N is in its infancy but studies to date have found that response to treatment may indeed be predicted by comparison of DW-MRI carried out before and during treatment. However, previous studies have included all sub-sites and biological sub-types. Establishing ADC thresholds that predict for local failure is an essential step towards using DW-MRI to improve the therapeutic ratio in treating SCC H&N. This would be done most robustly in a specific H&N sub-site and in sub-types with similar biological behaviour. The MeRInO study will help establish these thresholds in OPSCC

    Letters to the editor Reply

    Get PDF

    Novel components of the Toxoplasma inner membrane complex revealed by BioID.

    Get PDF
    UNLABELLED:The inner membrane complex (IMC) of Toxoplasma gondii is a peripheral membrane system that is composed of flattened alveolar sacs that underlie the plasma membrane, coupled to a supporting cytoskeletal network. The IMC plays important roles in parasite replication, motility, and host cell invasion. Despite these central roles in the biology of the parasite, the proteins that constitute the IMC are largely unknown. In this study, we have adapted a technique named proximity-dependent biotin identification (BioID) for use in T. gondii to identify novel components of the IMC. Using IMC proteins in both the alveoli and the cytoskeletal network as bait, we have uncovered a total of 19 new IMC proteins in both of these suborganellar compartments, two of which we functionally evaluate by gene knockout. Importantly, labeling of IMC proteins using this approach has revealed a group of proteins that localize to the sutures of the alveolar sacs that have been seen in their entirety in Toxoplasma species only by freeze fracture electron microscopy. Collectively, our study greatly expands the repertoire of known proteins in the IMC and experimentally validates BioID as a strategy for discovering novel constituents of specific cellular compartments of T. gondii. IMPORTANCE:The identification of binding partners is critical for determining protein function within cellular compartments. However, discovery of protein-protein interactions within membrane or cytoskeletal compartments is challenging, particularly for transient or unstable interactions that are often disrupted by experimental manipulation of these compartments. To circumvent these problems, we adapted an in vivo biotinylation technique called BioID for Toxoplasma species to identify binding partners and proximal proteins within native cellular environments. We used BioID to identify 19 novel proteins in the parasite IMC, an organelle consisting of fused membrane sacs and an underlying cytoskeleton, whose protein composition is largely unknown. We also demonstrate the power of BioID for targeted discovery of proteins within specific compartments, such as the IMC cytoskeleton. In addition, we uncovered a new group of proteins localizing to the alveolar sutures of the IMC. BioID promises to reveal new insights on protein constituents and interactions within cellular compartments of Toxoplasma
    corecore