3,741 research outputs found

    NMD monitors translational fidelity 24/7

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is generally thought to be a eukaryotic mRNA surveillance pathway tasked with the elimination of transcripts harboring an in-frame premature termination codon (PTC). As presently conceived, NMD acting in this manner minimizes the likelihood that potentially toxic polypeptide fragments would accumulate in the cytoplasm. This notion is to be contrasted to the results of systematic RNA-Seq and microarray analyses of NMD substrates in multiple model systems, two different experimental approaches which have shown that many mRNAs identified as NMD substrates fail to contain a PTC. Our recent results provide insight into, as well as a possible solution for, this conundrum. By high-resolution profiling of mRNAs that accumulate in yeast when the principal NMD regulatory genes (UPF1, UPF2, and UPF3) are deleted, we identified approximately 900 NMD substrates, the majority of which are normal-looking mRNAs that lack PTCs. Analyses of ribosomal profiling data revealed that the latter mRNAs tended to manifest elevated rates of out-of-frame translation, a phenomenon that would lead to premature translation termination in alternative reading frames. These results, and related observations of heterogeneity in mRNA isoforms, suggest that NMD should be reconsidered as a probabilistic mRNA quality control pathway that is continually active throughout an mRNA\u27s life cycle

    Dcp2 C-terminal Cis-Binding Elements Control Selective Targeting of the Decapping Enzyme by Forming Distinct Decapping Complexes [preprint]

    Get PDF
    A single Dcp1-Dcp2 decapping enzyme targets diverse classes of yeast mRNAs for decapping-dependent 5’ to 3’ decay, but the molecular mechanisms controlling selective mRNA targeting by the enzyme remain elusive. Through extensive genetic analyses we uncover cis-regulatory elements in the Dcp2 C-terminal domain that control selective targeting of the decapping enzyme by forming distinct decapping complexes. Two Upf1-binding motifs target the decapping enzyme to NMD substrates, and a single Edc3-binding motif targets both Edc3 and Dhh1 substrates. Pat1-binding leucine-rich motifs target Edc3 and Dhh1 substrates under selective conditions. Although it functions as a unique targeting component of specific complexes, Edc3 is a common component of multiple complexes. Xrn1 also has a specific Dcp2 binding site, allowing it to be directly recruited to decapping complexes. Collectively, our results demonstrate that Upf1, Edc3, and Pat1 function as regulatory subunits of the holo-decapping enzyme, controlling both its targeting specificity and enzymatic activation

    En-coding performance: from analogue to digital

    Get PDF
    Β© 2016 Informa UK Limited, trading as Taylor & Francis Group.This paper explores the connection between contemporary Live Coding practice in relation to the earlier forms of text-based performance and documentation used within the Fluxus movement. Analysing these works has allowed for a connection to be made, and an argument put forward that live coding in performance is not limited to digital work alone, but rather has a lineage linked through language and the symbiotic relationship created between performer and text. During the Fluxus movement of the early 1960s, a form of performance art emerged through the text score that acted as the ultimate reduction of the scripted form. Alongside static scores, artists began to use a process of live typing and recording to both document performance and alter their own environments. This aligns with the performative work of Live Coding, which has its own specific algorithmic syntax, creating a looping response between performer and text

    What can we learn from senescent platelets, their transcriptomes and proteomes?

    Get PDF
    Research into the natural aging process of platelets has garnered much research interest in recent years, and there have long been associations drawn between the proportion of newly formed platelets in the circulation and the risk of thrombosis. However, these observations have largely been demonstrated in patient groups in which there may be underlying systemic changes that effect platelet function. Recent advances in technology have allowed in-depth analysis of differently aged platelets isolated from the peripheral blood of healthy individuals and have demonstrated that aged platelets, often referred to as senescent platelets, undergo extensive changes in the transcriptome and proteome. Ultimately, these changes result in platelets whose functions have deteriorated such that they cannot partake in hemostatic responses to the same extent as newly formed platelets. Here, we review transcriptomic and proteomic research in platelet aging in the context of health and how this research sheds light upon alterations in platelet structure and function

    Asymmetries in Perception of 3D Orientation

    Get PDF
    Visual scene interpretation depends on assumptions based on the statistical regularities of the world. People have some preference for seeing ambiguously oriented objects (Necker cubes) as if tilted down or viewed from above. This bias is a near certainty in the first instant (∼1 s) of viewing and declines over the course of many seconds. In addition, we found that there is modulation of perceived orientation that varies with positionβ€”for example objects on the left are more likely to be interpreted as viewed from the right. Therefore there is both a viewed-from-above prior and a scene position-dependent modulation of perceived 3-D orientation. These results are consistent with the idea that ambiguously oriented objects are initially assigned an orientation consistent with our experience of an asymmetric world in which objects most probably sit on surfaces below eye level

    Platelet ageing: A review.

    Get PDF
    Platelet ageing is an area of research which has gained much interest in recent years. Newly formed platelets, often referred to as reticulated platelets, young platelets or immature platelets, are defined as RNA-enriched and have long been thought to be hyper-reactive. This latter view is largely rooted in associations and observations in patient groups with shortened platelet half-lives who often present with increased proportions of newly formed platelets. Evidence from such groups suggests that an increased proportion of newly formed platelets is associated with an increased risk of thrombotic events and a reduced effectiveness of standard anti-platelet therapies. Whilst research has highlighted the existence of platelet subpopulations based on function, size and age within patient groups, the common intrinsic changes which occur as platelets age within the circulation are only just being explored. By understanding the changes that occur during the natural ageing processes of platelets, we may be able to identify the triggers for alterations in platelet life span and platelet reactivity. Here we review research on platelet ageing in the context of health and disease, paying particular attention to the experimental approaches taken and the robustness of conclusions that can be drawn

    General decapping activators target different subsets of inefficiently translated mRNAs

    Get PDF
    The Dcp1-Dcp2 decapping enzyme and the decapping activators Pat1, Dhh1, and Lsm1 regulate mRNA decapping, but their mechanistic integration is unknown. We analyzed the gene expression consequences of deleting PAT1, LSM1, or DHH1, or the DCP2 C-terminal domain, and found that: i) the Dcp2 C-terminal domain is an effector of both negative and positive regulation; ii) rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly target specific subsets of yeast mRNAs and loss of the functions of each of these factors has substantial indirect consequences for genome-wide mRNA expression; and iii) transcripts targeted by Pat1, Lsm1, and Dhh1 exhibit only partial overlap, are generally translated inefficiently, and, as expected, are targeted to decapping-dependent decay. Our results define the roles of Pat1, Lsm1, and Dhh1 in decapping of general mRNAs and suggest that these factors may monitor mRNA translation and target unique features of individual mRNAs

    High-resolution profiling of NMD targets in yeast reveals translational fidelity as a basis for substrate selection

    Get PDF
    Nonsense-mediated mRNA decay (NMD) plays an important role in eukaryotic gene expression, yet the scope and the defining features of NMD-targeted transcripts remain elusive. To address these issues, we reevaluated the genome-wide expression of annotated transcripts in yeast cells harboring deletions of the UPF1, UPF2, or UPF3 genes. Our new RNA-seq analyses confirm previous results of microarray studies, but also uncover hundreds of new NMD-regulated transcripts that had escaped previous detection, including many intron-containing pre-mRNAs and several noncoding RNAs. The vast majority of NMD-regulated transcripts are normal-looking protein-coding mRNAs. Our bioinformatics analyses reveal that this set of NMD-regulated transcripts generally have lower translational efficiency and higher ratios of out-of-frame translation. NMD-regulated transcripts also have lower average codon optimality scores and higher transition probability to nonoptimal codons. Collectively, our results generate a comprehensive catalog of yeast NMD substrates and yield new insights into the mechanisms by which these transcripts are targeted by NMD

    Poly(A)-Binding Protein Regulates the Efficiency of Translation Termination

    Get PDF
    Multiple factors influence translation termination efficiency, including nonsense codon identity and immediate context. To determine whether the relative position of a nonsense codon within an open reading frame (ORF) influences termination efficiency, we quantitate the production of prematurely terminated and/or readthrough polypeptides from 26 nonsense alleles of 3 genes expressed in yeast. The accumulation of premature termination products and the extent of readthrough for the respective premature termination codons (PTCs) manifest a marked dependence on PTC proximity to the mRNA 3\u27 end. Premature termination products increase in relative abundance, whereas readthrough efficiencies decrease progressively across different ORFs, and readthrough efficiencies for a PTC increase in response to 3\u27 UTR lengthening. These effects are eliminated and overall translation termination efficiency decreases considerably in cells harboring pab1 mutations. Our results support a critical role for poly(A)-binding protein in the regulation of translation termination and also suggest that inefficient termination is a trigger for nonsense-mediated mRNA decay (NMD)
    • …
    corecore