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NMD is known as an mRNA surveillance mechanism, 
but until recently a coherent understanding of the targets 
of its surveillance activity has been difficult to pin down. 
Initially characterized in yeast and worms (Leeds et  al. 
1991; Peltz et al. 1993; Pulak and Anderson 1993), NMD 
was first thought to selectively degrade mRNAs transcribed 
from nonsense or frameshift alleles to diminish the pos-
sible dominant-negative effects of truncated polypeptides. 
This simple functional model was rapidly broadened to a 
more general role in mRNA quality control with the rec-
ognition that the pathway’s substrates included unspliced 
pre-mRNAs that had entered the cytoplasm (He et al. 1993; 
Pulak and Anderson 1993; Sayani et al. 2008), products of 
alternative splicing (Jaillon et al. 2008; Lareau et al. 2007; 
Lykke-Andersen et  al. 2014; Ni et  al. 2007), transcripts 
of pseudogenes or unproductive gene rearrangements (He 
et  al. 2003; Li and Wilkinson 1998; McGlincy and Smith 
2008), mRNAs subject to programmed frameshifting or 
leaky scanning (He et al. 2003; Welch and Jacobson 1999), 
and mRNAs with upstream open reading frames (uORFs) 
(Arribere and Gilbert 2013; Gaba et  al. 2005; He et  al. 
2003). In all such cases, it was easy to rationalize these 
additional substrates because their translation would ulti-
mately lead to a ribosome’s encounter with a PTC. How-
ever, the advent of genome-wide microarray and RNA-Seq 
analyses allowed for the comprehensive assembly of cata-
logs of NMD substrates in multiple organisms and these 
studies showed that NMD targets large numbers of appar-
ently normal wild-type mRNAs (He et  al. 2003; Lelivelt 
and Culbertson 1999; Rehwinkel et al. 2005). For example, 
our RNA-Seq analyses of mRNAs differentially expressed 

Abstract  Nonsense-mediated mRNA decay (NMD) is 
generally thought to be a eukaryotic mRNA surveillance 
pathway tasked with the elimination of transcripts harbor-
ing an in-frame premature termination codon (PTC). As 
presently conceived, NMD acting in this manner mini-
mizes the likelihood that potentially toxic polypeptide frag-
ments would accumulate in the cytoplasm. This notion is 
to be contrasted to the results of systematic RNA-Seq and 
microarray analyses of NMD substrates in multiple model 
systems, two different experimental approaches which have 
shown that many mRNAs identified as NMD substrates fail 
to contain a PTC. Our recent results provide insight into, as 
well as a possible solution for, this conundrum. By high-
resolution profiling of mRNAs that accumulate in yeast 
when the principal NMD regulatory genes (UPF1, UPF2, 
and UPF3) are deleted, we identified approximately 900 
NMD substrates, the majority of which are normal-looking 
mRNAs that lack PTCs. Analyses of ribosomal profiling 
data revealed that the latter mRNAs tended to manifest ele-
vated rates of out-of-frame translation, a phenomenon that 
would lead to premature translation termination in alterna-
tive reading frames. These results, and related observations 
of heterogeneity in mRNA isoforms, suggest that NMD 
should be reconsidered as a probabilistic mRNA quality 
control pathway that is continually active throughout an 
mRNA’s life cycle.
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in yeast cells lacking the principal NMD regulators Upf1, 
Upf2, or Upf3 identified approximately 900 commonly 
upregulated mRNAs, of which the vast majority were nor-
mal-looking transcripts with complete open reading frames 
(Celik et al. 2017).

Clearly, the existence of so many apparently PTC-free 
substrates has been perplexing and led to speculation that 
NMD had somehow been co-opted to regulate the levels 
of expression of seemingly normal genes. We believe that 
we have now resolved this conundrum. By analyzing ribo-
somal profiling data for yeast mRNAs that are NMD or 
non-NMD substrates, we found that the normal-looking 
yeast NMD substrates have significantly lower ribosome 
densities throughout their open reading frames than the non-
substrates, i.e., although these mRNAs appear normal they 
are translated relatively poorly (Celik et al. 2017). Further, 
contrary to earlier hypotheses that Upf1, the central regula-
tor of NMD, might silence the translation of NMD-targeted 
mRNAs (Isken et al. 2008; Muhlrad and Parker 1999), these 
deficiencies in translation are independent of the presence of 
Upf1. Most importantly, when compared to non-NMD sub-
strates, the normal-looking NMD substrates were found to 
have a higher rate of out-of-frame translation, lower average 
codon optimality, and a propensity to have longer stretches 
of non-optimal codons (Celik et al. 2017).

The implications of these observations are far reaching 
for our understanding of the cellular role of NMD, and its 
mechanism of activation. First, NMD targeting of the large 
number of normal-looking mRNAs may be caused by the 
decoding events occurring during a run of non-optimal 
codons. This could account for the diminished efficiency of 
translation for these transcripts, an increased probability for 
translational elongation errors, and, as a consequence, an 
enhanced rate of out-of-frame translation accompanied by 
a high likelihood encounter with an out-of-frame nonsense 
codon and ensuing premature termination (Fig. 1). Second, 
while it is possible that the reduced efficiency of transla-
tion and enhanced rate of out-of-frame translation detected 
for the normal-looking NMD substrates could have other 
causes, they appear less likely than those associated with 
sub-optimal translation. For example, the normal-looking 
NMD substrates may each have multiple transcript iso-
forms, possibly resulting from transcriptional initiation 
within protein coding regions (Malabat et  al. 2015). Such 
isoforms might lack the normal 5′-UTRs and initiation 
codons and instead utilize downstream out-of-frame AUGs 
for translation initiation. Alternative splicing events might 
also yield a subset of NMD-targeted transcripts. However, 
the elevated rates of out-of-frame translation observed with 
normal-looking NMD substrates are largely independent 
of iTSS status (Celik et  al. 2017) and only minor mRNA 
isoforms, i.e., those unlikely to have significant impact on 
transcriptome-wide studies, are thought to be generated 

by alternative splicing events in yeast (Kawashima et  al. 
2014). Third, with a propensity for frameshifting the most 
likely basis for premature termination and NMD substrate 
status of the normal-looking mRNAs, it is time to think of 
NMD as a probabilistic quality control mechanism, i.e., 
one that is capable of constant monitoring of gene expres-
sion errors that affect maintenance of the normal reading 
frame during mRNA translation. As summarized in Fig. 2, 
NMD substrates must encompass not only those mRNAs 
in which a ribosome’s encounter with a PTC is obvious 
and hard-wired (“traditional” NMD substrates), but also 
those mRNAs in which non-standard transcription ini-
tiation, downstream translation initiation, or unexpected 
frameshifting lead to premature translation termination, 
i.e., termination upstream of the site normally used for a 
given ORF (“probabilistic” NMD substrates). Finally, since 
the underlying principle of probabilistic decay implies that 
NMD can occur at any time during an mRNA’s translational 
life cycle it’s important to reconsider the popular “pioneer 
round” model for NMD (Maquat 2004). Although this 
model posits that NMD, at least in metazoans, only occurs 
during the initial round of mRNA translation, the results 
summarized here, as well as experiments in both yeast 
and mammalian cells showing that steady-state mRNAs 
can be targeted by NMD (Durand and Lykke-Andersen 
2013; Gaba et al. 2005; Maderazo et al. 2003; Rufener and 
Muhlemann 2013) all indicate that the presence of a PTC 
in an elongating ribosome’s A site will almost always trig-
ger NMD and that mRNAs undergoing translation cannot 

Fig. 1   Ribosomal failure to maintain the correct mRNA read-
ing frame is a common basis for NMD targeting. The figure depicts 
translation of a “normal-looking” mRNA and the ribosomal elonga-
tion events that lead to its acquisition of NMD substrate status. Top: 
blue ribosomes are translating the mRNA in the annotated open read-
ing frame (gray and black boxes) whereas the pink ribosomes have 
entered a stretch of non-optimal codons (pink, orange, and red boxes) 
and shifted to the +1 reading frame. Bottom: higher resolution depic-
tion of a premature termination event that occurs as a consequence of 
ribosomal elongation in the +1 reading frame
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acquire immunity from NMD. This, of course, is reassur-
ing when NMD is thought of as a cellular quality control 
mechanism that minimizes the accumulation of potentially 
toxic polypeptide fragments. Given the high degree of con-
servation of the NMD regulators it is likely that the prin-
ciples governing NMD substrate status that appear to be 
operational in yeast hold for all eukaryotes.
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