53 research outputs found
DES13S2cmm: the first superluminous supernova from the Dark Energy Survey
We present DES13S2cmm, the first spectroscopically-confirmed superluminous
supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data
and search algorithm used to find this event in the first year of DES
operations, and outline the spectroscopic data obtained from the European
Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z =
0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral
type (type I). Using this redshift, we find M_U_peak = -21.05 +0.10 -0.09 for
the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be
located in a faint, low metallicity (sub-solar), low stellar-mass host galaxy
(log(M/M_sun) = 9.3 +/- 0.3); consistent with what is seen for other SLSNe-I.
We compare the bolometric light curve of DES13S2cmm to fourteen similarly
well-observed SLSNe-I in the literature and find it possesses one of the
slowest declining tails (beyond +30 days rest frame past peak), and is the
faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I
studied herein possess a dispersion of only 0.2-0.3 magnitudes between +25 and
+30 days after peak (rest frame) depending on redshift range studied; this
could be important for 'standardising' such supernovae, as is done with the
more common type Ia. We fit the bolometric light curve of DES13S2cmm with two
competing models for SLSNe-I - the radioactive decay of 56Ni, and a magnetar -
and find that while the magnetar is formally a better fit, neither model
provides a compelling match to the data. Although we are unable to conclusively
differentiate between these two physical models for this particular SLSN-I,
further DES observations of more SLSNe-I should break this degeneracy,
especially if the light curves of SLSNe-I can be observed beyond 100 days in
the rest frame of the supernova.Comment: Accepted by MNRAS (2015 January 23), 13 pages, 6 figures, 2 table
Detection of CMB-cluster lensing using polarization data from SPTpol
We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that extracts the lensing dipole signature from stacked images formed by rotating the cluster-centered Stokes
Q
U
map cutouts along the direction of the locally measured background CMB polarization gradient. Using data from the SPTpol
500
 
 
deg
2
survey at the locations of roughly 18 000 clusters with richness
λ
≥
10
from the Dark Energy Survey (DES) Year-3 full galaxy cluster catalog, we detect lensing at
4.8
σ
. The mean stacked mass of the selected sample is found to be
(
1.43
±
0.40
)
×
10
14
M
⊙
which is in good agreement with optical weak lensing based estimates using DES data and CMB-lensing based estimates using SPTpol temperature data. This measurement is a key first step for cluster cosmology with future low-noise CMB surveys, like CMB-S4, for which CMB polarization will be the primary channel for cluster lensing measurements
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . I. Construction of CMB lensing maps and modeling choices
Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel’dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on
S
8
=
σ
8
√
Ω
m
/
0.3
at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . II. Cross-correlation measurements and cosmological constraints
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the
2500
 
 
deg
2
SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel’dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of
Ω
m
=
0.272
+
0.032
−
0.052
and
S
8
≡
σ
8
√
Ω
m
/
0.3
=
0.736
+
0.032
−
0.028
(
Ω
m
=
0.245
+
0.026
−
0.044
and
S
8
=
0.734
+
0.035
−
0.028
) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find
Ω
m
=
0.270
+
0.043
−
0.061
and
S
8
=
0.740
+
0.034
−
0.029
. Our constraints on
S
8
are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck
Interesting Objects Found while Searching for Hot DAs
We have been searching for southern hemisphere hot DA white dwarfs for roughly the past 10 years. We are using these stars to refine the absolute (color) calibration of the Dark Energy Survey (DES). Along the way however, we have run across an assortment of interesting (to someone) objects which include quasars, magnetic DAs, coolish DAs, a CV, and several non-DAs. We present some of them here; some with results of follow-up observations. Some we are still following ourselves
- …