8 research outputs found

    Approach to include load sequence effects in the design of an offshore wind turbine substructure

    No full text
    Fatigue is one of the main design drivers for offshore wind substructures. Using Fracture Mechanics methods, load sequence effects such as crack growth retardation due to large load peaks can be included in the fatigue damage estimation. Due to the sequence dependency, a method is required that represents the sequences of loads in the design or maintenance procedures. This paper presents a methodology to deal with this challenge. First, a framework is presented for coupling between the design load cases and the Fracture Mechanics methods, resulting into the requirements for loads and load sequences. Second, a 2-stage Markov Chain Monte Carlo model is presented which is able to create realistic loading sequences based on measurement data. The method is elaborated for fluctuating wind loads.</p

    Approach to include load sequence effects in the design of an offshore wind turbine substructure

    No full text
    Fatigue is one of the main design drivers for offshore wind substructures. Using Fracture Mechanics methods, load sequence effects such as crack growth retardation due to large load peaks can be included in the fatigue damage estimation. Due to the sequence dependency, a method is required that represents the sequences of loads in the design or maintenance procedures. This paper presents a methodology to deal with this challenge. First, a framework is presented for coupling between the design load cases and the Fracture Mechanics methods, resulting into the requirements for loads and load sequences. Second, a 2-stage Markov Chain Monte Carlo model is presented which is able to create realistic loading sequences based on measurement data. The method is elaborated for fluctuating wind loads

    Quel avenir pour la coloproctologie dans la prochaine décennie ?

    No full text
    corecore