15 research outputs found

    Influence of Culturing Conditions on Biomass Yield, Total Lipid and Fatty Acid Composition of Some Filamentous Fungi

    Get PDF
    In this work the effect of culturing conditions of filamentous fungi Penicillium raistrickii, Penicillium anatolicum, Fusarium sp. on biomass yield, the content of total lipids and fatty acids was studied. It has been established that in time the process of lipids accumulation correlated with biomass growth of cultures, reaching maximum values in stationary growth phase. Biomass yield and accumulation of general lipids was increased by adding zinc to the culture medium. The more intensive accumulation of biomass and general lipids was observed at temperature 18Β°C. Lowering the temperature of culturing has changed the ratio of saturated: Unsaturated fatty acids in the direction of increasing the latter

    Influence of Culturing Conditions on Biomass Yield, Total Lipid and Fatty Acid Composition of Some Filamentous Fungi

    Get PDF
    In this work the effect of culturing conditions of filamentous fungi Penicillium raistrickii, Penicillium anatolicum, Fusarium sp. on biomass yield, the content of total lipids and fatty acids was studied. It has been established that in time the process of lipids accumulation correlated with biomass growth of cultures, reaching maximum values in stationary growth phase. Biomass yield and accumulation of general lipids was increased by adding zinc to the culture medium. The more intensive accumulation of biomass and general lipids was observed at temperature 18Β°C. Lowering the temperature of culturing has changed the ratio of saturated: Unsaturated fatty acids in the direction of increasing the latter

    Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

    Get PDF
    Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate Ξ±-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2)

    Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

    Get PDF
    Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate Ξ±-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2)

    Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

    Get PDF
    Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate Ξ±-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2)

    Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

    Get PDF
    Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate Ξ±-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2)

    Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

    Get PDF
    Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate Ξ±-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2)

    Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

    Get PDF
    Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate Ξ±-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2)

    ЧислСнноС исслСдованиС зависимости динамичСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΎΡ‚ скорости двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° Π² Π·Π°Π΄Π°Ρ‡Π΅ ΠΎ ΠΊΠΎΠ½Π²Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Тидкости

    No full text
    A two-dimensional problem of the fluid flows with a dynamic contact angle is studied in the case of an uniformly moving contact point. Mathematical modeling of the flows is carried out with the help of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. On the thermocapillary free boundary the kinematic, dynamic conditions and the heat exchange condition of third order are fulfilled. The slip conditions (conditions of proportionality of the tangential stresses to the difference of the tangential velocities of liquid and wall) are prescribed on the solid boundaries of the channel supporting by constant temperature. The dependence of the dynamic contact angle on the contact point velocity is investigated numerically. The results demonstrate the contact angle behavior and the different flow characteristics with respect to the various values of the contact point velocity, friction coefficients, gravity acceleration and an intensity of the thermal boundary regimesΠ˜Π·ΡƒΡ‡Π°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° двиТСния Тидкости с динамичСским ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ Π² случаС Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ проводится Π½Π° основС Π°ΠΏΠΏΡ€ΠΎΠΊ- симации ΠžΠ±Π΅Ρ€Π±Π΅ΠΊΠ°-БуссинСска ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ НавьС-Бтокса. На тСрмокапиллярной свободной Π³Ρ€Π°Π½ΠΈ- Ρ†Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ кинСматичСскоС, динамичСскоС условия ΠΈ условиС Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° с внСшнСй срСдой Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ Ρ€ΠΎΠ΄Π°. Условия прилипания Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ Π½Π° Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€- ΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ постоянной Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. Π”Π°Π½Π½Ρ‹Π΅ условия ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой условия ΠΏΡ€ΠΎΠΏΠΎΡ€- Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… напряТСний Ρ€Π°Π·Π½ΠΈΡ†Π΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… скоростСй Тидкости ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ стСнки. ЧислСнно исслСдуСтся Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ динамичСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΎΡ‚ скорости Π΄Π²ΠΈ- ТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ динамичСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΈ различия Π² характСристиках тСчСния Π² зависимости ΠΎΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ скорости двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°, коэффициСнтов трСния, ускорСния силы тяТСсти ΠΈ интСнсивно- сти Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌ

    ЧислСнноС исслСдованиС зависимости динамичСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΎΡ‚ скорости двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° Π² Π·Π°Π΄Π°Ρ‡Π΅ ΠΎ ΠΊΠΎΠ½Π²Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Тидкости

    No full text
    A two-dimensional problem of the fluid flows with a dynamic contact angle is studied in the case of an uniformly moving contact point. Mathematical modeling of the flows is carried out with the help of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. On the thermocapillary free boundary the kinematic, dynamic conditions and the heat exchange condition of third order are fulfilled. The slip conditions (conditions of proportionality of the tangential stresses to the difference of the tangential velocities of liquid and wall) are prescribed on the solid boundaries of the channel supporting by constant temperature. The dependence of the dynamic contact angle on the contact point velocity is investigated numerically. The results demonstrate the contact angle behavior and the different flow characteristics with respect to the various values of the contact point velocity, friction coefficients, gravity acceleration and an intensity of the thermal boundary regimesΠ˜Π·ΡƒΡ‡Π°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° двиТСния Тидкости с динамичСским ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ Π² случаС Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ проводится Π½Π° основС Π°ΠΏΠΏΡ€ΠΎΠΊ- симации ΠžΠ±Π΅Ρ€Π±Π΅ΠΊΠ°-БуссинСска ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ НавьС-Бтокса. На тСрмокапиллярной свободной Π³Ρ€Π°Π½ΠΈ- Ρ†Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ кинСматичСскоС, динамичСскоС условия ΠΈ условиС Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° с внСшнСй срСдой Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ Ρ€ΠΎΠ΄Π°. Условия прилипания Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ Π½Π° Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€- ΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ постоянной Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. Π”Π°Π½Π½Ρ‹Π΅ условия ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой условия ΠΏΡ€ΠΎΠΏΠΎΡ€- Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… напряТСний Ρ€Π°Π·Π½ΠΈΡ†Π΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… скоростСй Тидкости ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ стСнки. ЧислСнно исслСдуСтся Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ динамичСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΎΡ‚ скорости Π΄Π²ΠΈ- ТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ динамичСского ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΈ различия Π² характСристиках тСчСния Π² зависимости ΠΎΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ скорости двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°, коэффициСнтов трСния, ускорСния силы тяТСсти ΠΈ интСнсивно- сти Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌ
    corecore