52 research outputs found

    Neuroprotective Role of Hypothermia in Acute Spinal Cord Injury

    No full text
    Even nowadays, the question of whether hypothermia can genuinely be considered therapeutic care for patients with traumatic spinal cord injury (SCI) remains unanswered. Although the mechanisms of hypothermia action are yet to be fully explored, early hypothermia for patients suffering from acute SCI has already been implemented in clinical settings. This article discusses measures for inducing various forms of hypothermia and summarizes several hypotheses describing the likelihood of hypothermia mechanisms of action. We present our objective neuro-electrophysiological results and demonstrate that early hypothermia manifests neuroprotective effects mainly during the first- and second-month post-SCI, depending on the severity of the injury, time of intervening, duration, degree, and modality of inducing hypothermia. Nevertheless, eventually, its beneficial effects gradually but consistently diminish. In addition, we report potential complications and side effects for the administration of general hypothermia with a unique referment to the local hypothermia. We also provide evidence that instead of considering early hypothermia post-SCI a therapeutic approach, it is more a neuroprotective strategy in acute and sub-acute phases of SCI that mostly delay, but not entirely avoid, the natural history of the pathophysiological events. Indeed, the most crucial rationale for inducing early hypothermia is to halt these devastating inflammatory and apoptotic events as early and as much as possible. This, in turn, creates a larger time-window of opportunity for physicians to formulate and administer a well-designed personalized treatment for patients suffering from acute traumatic SCI

    Novel modeling of somatosensory evoked potentials for the assessment of spinal cord injury

    No full text
    Abstract Objective: Previous work has shown that differences in the somatosensory evoked potential (SEP) signals between a normal spinal pathway and spinal pathway affected by spinal cord injury (SCI) provide a means to study the degree of injury. This paper proposes a novel quantitative SCI assessment method using time-domain SEP signals. Methods: A pruned and unstructured fit between SEP signals from a normal spinal pathway and a spinal pathway affected by SCI is developed using methods inspired by recent results in sparse reconstruction theory. The coefficients from the resulting fit are used to develop a quantitative assessment of SCI that is tested on actual SEP signals collected from rodents that have been subjected to partial and complete spinal cord transection. Results: The proposed method provides a rich parametric measure that integrates SEP amplitude, time latency, and morphology, while exhibiting a high degree of correlation with existing subjective and quantitative SCI assessment methods. Conclusion: The proposed SCI encapsulates a model of the injury to quantify SCI. Significance: The proposed SCI quantification method may be used to complement existing SCI assessment methods

    Assessment of spinal cord injury via sparse modeling of somatosensory evoked potential signals

    No full text
    Abstract The morphological differences between somatosensory evoked potential (SEP) signals from a normal spinal pathway and spinal pathway affected by spinal cord injury (SCI) provide an indication of the degree of SCI. A sparse representation of the fit between these signals is proposed in this paper as an SCI assessment method. The proposed method is tested on actual SEP signals collected from rodents that have been subjected to spinal transection. Results indicate that the proposed method provides a robust measure of the different degrees of SCI resulting from transection of the spinal cord

    Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.

    Get PDF
    Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI). Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES) cell-derived oligodendrocyte progenitor cells (OPCs) in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs) were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period.hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP) or pluripotent cells (OCT4).hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused increased cell death but did not affect the long-term cell proliferation or survival, indicating that cells can be transplanted sooner than conventionally accepted

    microRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells

    Get PDF
    Background: Cells of the oligodendrocyte (OL) lineage play a vital role in the production and maintenance of myelin, a multilamellar membrane which allows for saltatory conduction along axons. These cells may provide immense therapeutic potential for lost sensory and motor function in demyelinating conditions, such as spinal cord injury, multiple sclerosis, and transverse myelitis. However, the molecular mechanisms controlling OL differentiation are largely unknown. MicroRNAs (miRNAs) are considered the ‘‘micromanagers’ ’ of gene expression with suggestive roles in cellular differentiation and maintenance. Although unique patterns of miRNA expression in various cell lineages have been characterized, this is the first report documenting their expression during oligodendrocyte maturation from human embryonic stem (hES) cells. Here, we performed a global miRNA analysis to reveal and identify characteristic patterns in the multiple stages leading to OL maturation from hES cells including those targeting factors involved in myelin production. Methodology/Principal Findings: We isolated cells from 8 stages of OL differentiation. Total RNA was subjected to miRNA profiling and validations preformed using real-time qRT-PCR. A comparison of miRNAs from our cultured OLs and OL progenitors showed significant similarities with published results from equivalent cells found in the rat and mouse centra
    corecore