20 research outputs found

    N-(3-Bromo­phen­yl)-3,4,5-trimethoxy­benzamide

    Get PDF
    In the title compound, C16H16BrNO4, the dihedral between the planes of the aromatic rings is 7.74 (18)°. The amide group is tilted with respect to the bromo- and meth­oxy-substituted aromatic rings by 36.3 (8) and 35.2 (8)°, respectively. The meta-meth­oxy groups are essentially in-plane with the aromatic ring [dihedral angles CH3—O—C—C = −4.6 (4) and −2.5 (4)°]. The para-meth­oxy group is markedly displaced from the ring plane [dihedral angle CH3—O—C—C = −72.5 (4)°]. The crystal packing is stabilized by N—H⋯O hydrogen bonds linking the mol­ecules into chains running along the b axis

    Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer’s Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-10-27, pub-electronic 2021-10-30Publication status: PublishedAlzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease

    2-(4-Methylphenyl)-2-oxoethyl 3-bromobenzoate

    No full text
    The molecule of the title compound, C16H13BrO3, is built of two approximately planar fragments, viz. 3-bromobenzoate [maximum deviation = 0.055 (2) Å and 2-oxo-2-p-tolylethyl [maximum deviation = 0.042 (2) Å], inclined by 46.51 (7)°. In the crystal, weak C—H...O hydrogen bonds and Br...Br contacts [3.6491 (7) Å] connect the molecules into infinite layers parallel to (-221)

    Crystal structure of 2-(4-chlorophenyl)-2-oxoethyl 3-bromobenzoate

    Get PDF
    2-(4-Chlorophenyl)-2-oxoethyl 3-bromobenzoate, C15H10BrClO3, was synthesized in a single-step reaction by condensation of 3-bromobenzoic acid with 2-bromo-1-(4-chlorophenyl)ethanone in dimethylformamide in the presence of triethylamine as a catalyst. The structure consists of an aryl ketone moiety linked to an aryl ester unit by a methylene group. Both units are reasonably planar (r.m.s. deviations of 0.119 and 0.010 Å for the aryl ketone and aryl ester units, respectively) and are almost orthogonal, with an angle of 88.60 (3)° between them. In the crystal, molecules form five separate sets of inversion dimers. Three of these are generated by two C—H...O interactions and a C—H...Br contact, and form chains along c and along the ab cell diagonal. In addition, two inversion-related π–π stacking interactions between like aryl rings again form chains of molecules but in this instance along the bc diagonal. These contacts generate infinite layers of molecules parallel to (011) and stack the molecules along the a-axis direction

    Rapid Synthesis of Gold Nanoparticles from Quercus incana and Their Antimicrobial Potential against Human Pathogens

    No full text
    In current study, bioreduction of tetrachloroauric acid (HAuCl4·3H2O) was carried out using leaves extract of Quercus incana for nanoparticle synthesis. The nanoparticles were characterized by ultraviolet visible spectrum (UV), Fourier-transform infrared (FT-IR), and transmission electron microscopy (TEM) analysis. The gold nanoparticles (GNPs) were generally clumpy agglomerates of polydispersed particles, with an average size in the range 5.5–10 nm. The Gas chromatography–mass spectrometry (GC–MS) qualitative analysis and FT-IR data supported the presence of bioactive compounds, which are responsible for the metal reduction and nanoparticles stabilization. The biocompatibility of synthesized GNPs was evaluated via antibacterial activity by using human bacterial pathogens. The results showed that synthesized GNPs showed enhanced antibacterial activity against all bacterial pathogens

    Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer’s Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis

    No full text
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease

    Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification

    No full text
    Two-dimensional graphene oxide (GO)-based lamellar membranes have been widely developed for desalination, water purification, gas separation, and pervaporation. However, membranes with a well-organized multilayer structure and controlled pore size remain a challenge. Herein, an easy and efficient method is used to fabricate MoO2@GO and WO3@GO nanocomposite membranes with controlled structure and interlayer spacing. Such membranes show good separation for salt and heavy metal ions due to the intensive stacking interaction and electrostatic attraction. The as-prepared composite membranes showed high rejection rates (˃70%) toward small metal ions such as sodium (Na+) and magnesium (Mg2+) ions. In addition, both membranes also showed high rejection rates ˃99% for nickel (Ni2+) and lead (Pb2+) ions with good water permeability of 275 ± 10 L m−2 h−1 bar−1. We believe that our fabricated membranes will have a bright future in next generation desalination and water purification membranes
    corecore