204 research outputs found

    Comparative 1D Blue-Native electrophoresis analysis of Plasmodium falciparum and human proteins associated with cytoadherence.

    Get PDF
    BACKGROUND To understand more about changes to the molecular components that occur when host endothelium interacts with Plasmodium falciparum-infected erythrocytes, a combined technique of protein separation (1D Blue-Native electrophoresis) and mass spectrometry of infected erythrocytes with endothelial cells (EC) in a co-culture system has been used. METHODS Native proteins were extracted from co-cultures and identified by mass spectrometry. Proteomic data from different parasite strains, either adhesion proficient (to endothelial cells) or non-adherent, were analysed in parallel to reveal protein associations linked to cytoadherence. Informatic approaches were developed to facilitate this comparison. RESULTS Blue-Native gel separation and LC/MS/MS identification revealed major differences in samples produced from endothelial cell co-culture with adherent and non-adherent parasite strains. This approach enabled us to identify protein associations seen only with the adhesion proficient parasite strain. CONCLUSIONS The combination of proteomic and analytical approaches has identified differences between adherent and non-adherent parasite lines in co-culture with EC, providing potential candidates for complexes or associations formed during cytoadherence involved in cell structure, signalling and apoptosis

    The genetic polymorphism of Plasmodium vivax genes in endemic regions of Thailand

    Get PDF
    AbstractObjectiveTo investigate the genetic polymorphism of Plasmodium vivax (P. vivax) PvCSP and PvMSP1 genes from field isolates at four endemic regions (North, East, West and South) of Thailand.MethodsThe 152 P. vivax infected cases from dried blood spots were DNA extracted and confirmed by species-specific primer sets using multiplex PCR method. PvMSP1 fragments F2 and F3; PvCSP were genotyped using RFLP-PCR method.ResultsTotally amplified DNA which was multiple genotypes for PvMSP1 F2 and PvMSP1 F3 were 12.50% and 8.55%, respectively while PvCSP was 3.95%. The overall frequency of multiple genotypes was 25%. There were 12 allele types of PvMSP1 F2 using AluI enzyme digestion and 8 size variations were found in PvMSP1 F3. The isolates from western region was highly genetic diverse when compare among all isolates. The predominant variant type of PvCSP gene was VK210 type.ConclusionsThe multiple genotypes are common found in Thailand and it might hide the real genotype. PvCSP does not have extensive genetic diversity in this study. However, PvMSP1 marker due to multiple genotypes is difficult to be analyzed. The multiple genotypes findings might stem from population migration and vector species findings

    Broad inhibition of plasmodium falciparum cytoadherence by (+)-epigallocatechin gallate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The surface antigen P<it>f</it>EMP-1 is a key virulence factor of the human malaria parasite implicated in the cytoadherence of <it>Plasmodium falciparum </it>infected erythrocytes to a range of receptors on host endothelium. Among these host receptors, binding to ICAM-1 is related to cerebral malaria. The majority of the mortality in children with cerebral malaria is seen within 24 h of hospital admission despite the use of effective anti-parasite drugs, therefore, the development of adjunctive therapies is urgently needed.</p> <p>The polyphenolic compound (+)-epigallocatechin gallate ((+)-EGCG) has been previously evaluated for anti-adhesive properties using a small number of laboratory parasite isolates. Here, this property is further explored using a new panel of ICAM-1-binding patient isolates of <it>P. falciparum </it>to ascertain if (+)-EGCG might be effective as a broad spectrum inhibitor of ICAM-1-based cytoadherence.</p> <p>Methods</p> <p><it>Plasmodium falciparum </it>lines, including A4 and ItG as positive controls and nine new ICAM-1 binding patient isolates, were allowed to bind with ICAM-1-Fc protein under static assay conditions in the presence and absence of 50 μM (+)-EGCG. Adhesion levels of all the parasite strains were quantified by microscopy as the mean number of infected erythrocyte (IE) bound per mm<sup>2 </sup>of surface area and statistical comparisons were made to demonstrate the effect of (+)-EGCG on the binding of various parasite variants to human ICAM-1.</p> <p>Results</p> <p>This study revealed that binding of patient isolates to ICAM-1 was reduced significantly with inhibition levels of 37% in patient isolate BC-12 up to a maximum of 80% in patient isolate 8146 at 50 μM (+)-EGCG.</p> <p>Conclusion</p> <p>Evaluation of the anti-adhesive property of (+)-EGCG against a new panel of ICAM-1-binding patient isolates of <it>P. falciparum </it>showed that this inhibitor, identified as potential mimic of the L43 loop of human ICAM-1, was effective at blocking cytoadherence.</p

    In vitro inhibition and reversal of Plasmodium falciparum cytoadherence to endothelium by monoclonal antibodies to ICAM-1 and CD36

    Get PDF
    Background Sequestration of parasitized red blood cells from the peripheral circulation during an infection with Plasmodium falciparum is caused by an interaction between the parasite protein PfEMP1 and receptors on the surface of host endothelial cells, known as cytoadherence. Several lines of evidence point to a link between the pathology of severe malaria and cytoadherence, therefore blocking adhesion receptors involved in this process could be a good target to inhibit pRBC sequestration and prevent disease. In a malaria endemic setting this is likely to be used as an adjunct therapy by reversing existing cytoadherence. Two well-characterized parasite lines plus three recently derived patient isolates were tested for their cytoadherence to purified receptors (CD36 and ICAM-1) as well as endothelial cells. Monoclonal antibodies against human CD36 and ICAM-1 were used to inhibit and reverse infected erythrocyte binding in static and flow-based adhesion assays. Results Anti-ICAM-1 and CD36 monoclonal antibodies were able to inhibit and reverse P. falciparum binding of lab and recently adapted patient isolates in vitro. However, reversal of binding was incomplete and varied in its efficiency between parasite isolates. Conclusions The results show that, as a proof of concept, disturbing existing ligand–receptor interactions is possible and could have potential therapeutic value for severe malaria. The variation seen in the degree of reversing existing binding with different parasite isolates and the incomplete nature of reversal, despite the use of high affinity inhibitors, suggest that anti-adhesion approaches as adjunct therapies for severe malaria may not be effective, and the focus may need to be on inhibitory approaches such as vaccines

    Automated counting for Plasmodium falciparum cytoadherence experiments.

    Get PDF
    The automated counting programs are an accurate and practical way of quantifying static parasite binding assays to purified proteins. They are less accurate when applied to cell based systems, but can still provide a reasonable level of accuracy to give a semi-quantitative readout

    Vascular endothelial cells cultured from patients with cerebral or uncomplicated malaria exhibit differential reactivity to TNF.

    Get PDF
    Plasmodium falciparum malaria is a major cause of morbidity and mortality in African children, and factors that determine the development of uncomplicated (UM) versus cerebral malaria (CM) are not fully understood. We studied the ex vivo responsiveness of microvascular endothelial cells to pro-inflammatory stimulation and compared the findings between CM and UM patients. In patients with fatal disease we compared the properties of vascular endothelial cells cultured from brain tissue to those cultured from subcutaneous tissue, and found them to be very similar. We then isolated, purified and cultured primary endothelial cells from aspirated subcutaneous tissue of patients with CM (EC(CM) ) or UM (EC(UM) ) and confirmed the identity of the cells before analysis. Upon TNF stimulation in vitro, EC(CM) displayed a significantly higher capacity to upregulate ICAM-1, VCAM-1 and CD61 and to produce IL-6 and MCP-1 but not RANTES compared with EC(UM) . The shedding of endothelial microparticles, a recently described parameter of severity in CM, and the cellular level of activated caspase-3 were both significantly greater in EC(CM) than in EC(UM) . These data suggest that inter-individual differences in the endothelial inflammatory response to TNF may be an additional factor influencing the clinical course of malaria

    Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes

    Get PDF
    A major determinant of pathogenicity in malaria caused by Plasmodium falciparum is the adhesion of parasite-infected erythrocytes to the vasculature or tissues of infected individuals. This occludes blood flow, leads to inflammation and increases parasitaemia by reducing spleen-mediated clearance of the parasite. This adhesion is mediated by PfEMP1, a multi-variant family of around 60 proteins per parasite genome which interact with specific host receptors. One of the most common of these receptors is intracellular adhesion molecule-1 (ICAM-1) which is bound by two distinct groups of PfEMP1, A-type and B or C (BC) - type. Here we present the first structure of a domain from a B-type PfEMP1 bound to ICAM-1, revealing a complex binding site. Comparison with the existing structure of an Atype PfEMP1 bound to ICAM-1 shows that the two complexes share a globally similar architecture. However, while the A-type PfEMP1 bind ICAM-1 through a highly conserved binding surface, the BC-type PfEMP1 use a binding site that is more diverse in sequence, similar to how PfEMP1 interact with other human receptors. We also show that A- and BCtype PfEMP1 present ICAM-1 at different angles, perhaps influencing the ability of neighbouring PfEMP1 domains to bind additional receptors. This illustrates the deep diversity of the PfEMP1 and demonstrates how variations in a single domain architecture can modulate binding to a specific ligand to control function and facilitate immune evasion

    An external sensing system in Plasmodium falciparum-infected erythrocytes

    Get PDF
    Additional file 4. ItG-pRBC were treated with 10 ng/ml TNF for 60, 30, 15 and 5 min and the cellular proteins were extracted and separated by SDS-PAGE, followed by Western blot probed with anti-HSP90 and AB4 antibodies. The 90kDa protein recognized by the two antibodies showed similar expression patterns

    G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle

    Get PDF
    Granulocyte-colony stimulating factor (G-CSF) increases recovery of rodent skeletal muscles after injury, and increases muscle function in rodent models of neuromuscular disease. However, the mechanisms by which G-CSF mediates these effects are poorly understood. G-CSF acts by binding to the membrane spanning G-CSFR and activating multiple intracellular signaling pathways. Expression of the G-CSFR within the haematopoietic system is well known, but more recently it has been demonstrated to be expressed in other tissues. However, comprehensive characterization of G-CSFR expression in healthy and diseased skeletal muscle, imperative before implementing G-CSF as a therapeutic agent for skeletal muscle conditions, has been lacking. Here we show that the G-CSFR is expressed in proliferating C2C12 myoblasts, differentiated C2C12 myotubes, human primary skeletal muscle cell cultures and in mouse and human skeletal muscle. In mdx mice, a model of human Duchenne muscular dystrophy (DMD), G-CSF mRNA and protein was down-regulated in limb and diaphragm muscle, but circulating G-CSF ligand levels were elevated. G-CSFR mRNA in the muscles of mdx mice was up-regulated however steady-state levels of the protein were down-regulated. We show that G-CSF does not influence C2C12 myoblast proliferation, differentiation or phosphorylation of Akt, STAT3, and Erk1/2. Media change alone was sufficient to elicit increases in Akt, STAT3, and Erk1/2 phosphorylation in C2C12 muscle cells and suggest previous observations showing a G-CSF increase in phosphoprotein signaling be viewed with caution. These results suggest that the actions of G-CSF may require the interaction with other cytokines and growth factors in vivo, however these data provides preliminary evidence supporting the investigation of G-CSF for the management of muscular dystrophy
    corecore