12 research outputs found

    Alternative architecture of the E. coli chemosensory array

    Get PDF
    Chemotactic responses in motile bacteria are the result of sophisticated signal transduction by large, highly organized arrays of sensory proteins. Despite tremendous progress in the understanding of chemosensory array structure and function, a structural basis for the heightened sensitivity of networked chemoreceptors is not yet complete. Here, we present cryo-electron tomography visualisations of native-state chemosensory arrays in E. coli minicells. Strikingly, these arrays appear to exhibit a p2-symmetric array architecture that differs markedly from the p6-symmetric architecture previously described in E. coli. Based on this data, we propose molecular models of this alternative architecture and the canonical p6-symmetric assembly. We evaluate our observations and each model in the context of previously published data, assessing the functional implications of an alternative architecture and effects for future studies

    Complete structure of the chemosensory array core signalling unit in an E. coli 1 minicell strain

    Get PDF
    Motile bacteria sense chemical gradients with transmembrane receptors organised in supramolecular signalling arrays. Understanding stimulus detection and transmission at the molecular level requires precise structural characterisation of the array building block known as a core signalling unit. Here we introduce an Escherichia coli strain that forms small minicells possessing extended and highly ordered chemosensory arrays. We use cryo-electron tomography and subtomogram averaging to provide a three-dimensional map of a complete core signalling unit, with visible densities corresponding to the HAMP and periplasmic domains. This map, combined with previously determined high resolution structures and molecular dynamics simulations, yields a molecular model of the transmembrane core signalling unit and enables spatial localisation of its individual domains. Our work thus offers a solid structural basis for the interpretation of a wide range of existing data and the design of further experiments to elucidate signalling mechanisms within the core signalling unit and larger array

    Multi‐scale ensemble properties of the Escherichia coli RNA degradosome

    Get PDF
    Abstract: In organisms from all domains of life, multi‐enzyme assemblies play central roles in defining transcript lifetimes and facilitating RNA‐mediated regulation of gene expression. An assembly dedicated to such roles, known as the RNA degradosome, is found amongst bacteria from highly diverse lineages. About a fifth of the assembly mass of the degradosome of Escherichia coli and related species is predicted to be intrinsically disordered – a property that has been sustained for over a billion years of bacterial molecular history and stands in marked contrast to the high degree of sequence variation of that same region. Here, we characterize the conformational dynamics of the degradosome using a hybrid structural biology approach that combines solution scattering with ad hoc ensemble modelling, cryo‐electron microscopy, and other biophysical methods. The E. coli degradosome can form punctate bodies in vivo that may facilitate its functional activities, and based on our results, we propose an electrostatic switch model to account for the propensity of the degradosome to undergo programmable puncta formation

    Recognition of Peptidoglycan Fragments by the Transpeptidase PBP4 From Staphylococcus aureus

    Get PDF
    Peptidoglycan (PG) is an essential component of the cell envelope, maintaining bacterial cell shape and protecting it from bursting due to turgor pressure. The monoderm bacterium Staphylococcus aureus has a highly cross-linked PG, with ~90% of peptide stems participating in DD-cross-links and up to 15 peptide stems connected with each other. These cross-links are formed in transpeptidation reactions catalyzed by penicillin-binding proteins (PBPs) of classes A and B. Most S. aureus strains have three housekeeping PBPs with this function (PBP1, PBP2, and PBP3) but MRSA strains have acquired a third class B PBP, PBP2a, which is encoded by the mecA gene and required for the expression of high-level resistance to β-lactams. Another housekeeping PBP of S. aureus is PBP4, which belongs to the class C PBPs, and hence would be expected to have PG hydrolase (DD-carboxypeptidase or DD-endopeptidase) activity. However, previous works showed that, unexpectedly, PBP4 has transpeptidase activity that significantly contributes to both the high level of cross-linking in the PG of S. aureus and to the low level of β-lactam resistance in the absence of PBP2a. To gain insights into this unusual activity of PBP4, we studied by NMR spectroscopy its interaction in vitro with different substrates, including intact peptidoglycan, synthetic peptide stems, muropeptides, and long glycan chains with uncross-linked peptide stems. PBP4 showed no affinity for the complex, intact peptidoglycan or the smallest isolated peptide stems. Transpeptidase activity of PBP4 was verified with the disaccharide peptide subunits (muropeptides) in vitro, producing cyclic dimer and multimer products; these assays also showed a designed PBP4(S75C) nucleophile mutant to be inactive. Using this inactive but structurally highly similar variant, liquid-state NMR identified two interaction surfaces in close proximity to the central nucleophile position that can accommodate the potential donor and acceptor stems for the transpeptidation reaction. A PBP4:muropeptide model structure was built from these experimental restraints, which provides new mechanistic insights into mecA independent resistance to β-lactams in S. aureus

    Cryo-electron tomography of bacterial minicells

    No full text
    Pas de résuméThe following thesis recounts work in which cryo-electron tomography and subtomogramaveraging were applied to the study of chemosensory arrays in E. coli minicells. The focus ofthe work is the optimal application of subtomogram averaging to this biological system. Inparticular, the thesis draws upon recent developments in subtomogram averagingmethodology to overcome challenges associated with image processing in cryo-electrontomography. In the introductory chapter the use of cryo-electron tomography for in situstructural biology is introduced. Work describing chemosensory core-signalling unit structurewhich also introduces the biology of the system is presented in Chapter 2. A brief foray intothe description of an observed alternative chemosensory array ultrastructure constitutesChapter 3. Image analysis methodology in structural cryo-electron tomography has continuedto develop rapidly from 2017-2020, the period during which this work was undertaken. Assuch, Chapter 4 describes technical contributions which facilitated the application of state-of-the-art subtomogram averaging methodology to the study of chemosensory arrays and otherchallenging structural targets. Finally, Chapter 5 introduces promising first results on datacollected in the final stages of this thesis in the context of avenues for further study anddiscusses the future of cryo-electron tomography

    AI in Cryo-EM - EMBO course Birkbeck 2023

    No full text
    An introductory lecture on AI given at the EMBO practical course on image processing 2023 at Birkbeck College, London, UK. https://meetings.embo.org/event/23-cryo-em-image-processin

    A flexible framework for multi-particle refinement in cryo-electron tomography

    No full text
    International audienceCryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M . We illustrate the power of working within this framework by applying it to EMPIAR-10164 , a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164 . The guide is hosted on https://teamtomo.org/ , a collaborative online platform we establish for sharing knowledge about cryo-ET

    A robust normalized local filter to estimate compositional heterogeneity directly from cryo-EM maps

    No full text
    Abstract Cryo electron microscopy (cryo-EM) is used by biological research to visualize biomolecular complexes in 3D, but the heterogeneity of cryo-EM reconstructions is not easily estimated. Current processing paradigms nevertheless exert great effort to reduce flexibility and heterogeneity to improve the quality of the reconstruction. Clustering algorithms are typically employed to identify populations of data with reduced variability, but lack assessment of remaining heterogeneity. Here we develope a fast and simple algorithm based on spatial filtering to estimate the heterogeneity of a reconstruction. In the absence of flexibility, this estimate approximates macromolecular component occupancy. We show that our implementation can derive reasonable input parameters, that composition heterogeneity can be estimated based on contrast loss, and that the reconstruction can be modified accordingly to emulate altered constituent occupancy. This stands to benefit conventionally employed maximum-likelihood classification methods, whereas we here limit considerations to cryo-EM map interpretation, quantification, and particle-image signal subtraction

    Data for Alternative architecture of the E. coli chemosensory array

    No full text
    Chemotactic responses in motile bacteria are the result of sophisticated signal transduction by large, highly organized arrays of sensory proteins. Despite tremendous progress in the understanding of chemosensory array structure and function, a structural basis for the heightened sensitivity of networked chemoreceptors is not yet complete. Here we present cryo-electron tomography visualisations of native-state chemosensory arrays in E. coli minicells. Strikingly, these arrays exhibit a p2-symmetric array architecture that differs markedly from the p6-symmetric architecture previously described in E. coli . Based on this data, we propose molecular models of this alternative architecture and the canonical p6-symmetric assembly. We evaluate our observations and each model in the context of previously published data, assessing the functional implications of an alternative architecture and effects for future studies

    Montage electron tomography of vitrified specimens

    No full text
    Cryo-electron tomography provides detailed views of macromolecules in situ. However, imaging a large field of view to provide more cellular context requires reducing magnification during data collection, which in turn restricts the resolution. To circumvent this trade-off between field of view and resolution, we have developed a montage data collection scheme that uniformly distributes the dose throughout the specimen. In this approach, sets of slightly overlapping circular tiles are collected at high magnification and stitched to form a composite projection image at each tilt angle. These montage tilt-series are then reconstructed into massive tomograms with a small pixel size but a large field of view. For proof-of-principle, we applied this method to the thin edge of HeLa cells. Thon rings to better than 10 Å were detected in the montaged tilt-series, and diverse cellular features were observed in the resulting tomograms. These results indicate that the additional dose required by this technique is not prohibitive to performing structural analysis to intermediate resolution across a large field of view. We anticipate that montage tomography will prove particularly useful for lamellae, increase the likelihood of imaging rare cellular events, and facilitate visual proteomics
    corecore