18 research outputs found

    Diagnóstico general y servicio prestado en la Cooperativa Agrícola Integral Unión de 4 Pinos R.L. Santiago Sacatepéquez, Guatemala C.A. y evaluación de Boscalid + Pyraclostrobin en la producción y prolongación de vida en anaquel del zucchini (Cucúrbita pepo L. subsp. pepo.)

    Get PDF
    La presente investigación se realizó en a Cooperativa Agrícola Integral Unión de 4 Pinos, R.L., Finca La Suiza, San Lucas Sacatepéquez, mediante el diagnóstico realizado en Finca La Suiza, área productora de Cooperativa Agrícola Integral Unión de 4 Pinos, determinando que la importancia de investigar el uso de nuevas tecnologías que aumenten la vida de anaquel del zucchini. La investigación consistió en la evaluación del efecto de los ingredientes activos Boscalid+Pyraclostrobin en la producción y prolongación de vida en anaquel del zucchini, para lo cual el ensayo fue dividido en dos etapas, la primera la producción en campo y la segunda el manejo postcosecha en planta empacadora. La primera parte fue realizada en Finca La Suiza, para lo cual se elaboró un plan de manejo fitosanitario, tomando como base el plan de manejo fitosanitario para el cultivo de zucchini Departamento Agrícola 2009, a la cual se incluyeron las aplicaciones de la estrobilurina (Boscalid+Pyraclostrobin) se evaluaron cuatro tratamientos, de los cuales uno era el testigo absoluto, dos tratamientos con 2 y 3 aplicaciones de la estrobilurina (Boscalid+Pyraclostrobin) en diferentes etapas fenológicas del cultivo y un cuarto tratamiento el manejo tradicional del Departamento Agrícola, asi como manejo postcosecha del producto, el cual fue sometido a un procedimiento de clasificación, lavado, desinfección, empaque y colocación en cuarto frio (4ºC) para determinar los días de vida en anaquel del zucchini

    Model Results in Different 3-Food Environments with Truncated Selection.

    No full text
    <p>The effects of increasing competition, <i>c</i> (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.e004" target="_blank">Equation 3</a>) on the mean level of nutritional latitude, <i>K</i>, (and the 2.5<sup>th</sup> and 97.5<sup>th</sup> percentile; dashed line) that evolves under a 3-food environment, when the model is run with truncated selection. All data are based on 30 model runs. A geometric visualisation of each environment is given; see <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.g002" target="_blank">Fig. 2</a> legend for details. The first 10% of the population to cross the dashed line (<i>F</i> = 0.9 and 0.5; (A) and (B), respectively) in the geometric visualisation contribute to the subsequent generation.</p

    The Effects of <i>K</i> on Variables Within a Single Generation Over Time.

    No full text
    <p>The mean A) fitness, B) number of contests and C) win rate of individuals with <i>K</i> = 0.25 (black) and <i>K</i> = 0.85 (red) over time within one generation, when competition, <i>c</i> (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.e004" target="_blank">Equation 3</a>) is 0.683 (left panels) and 0.767 (right panels). Each panel is based on the results of 30 independent model runs, each with 75 individuals with each <i>K</i> value.</p

    The Effects of the Proportion of the population With High <i>K</i> on Fitness at the End of a Single Generation.

    No full text
    <p>The effects of the proportion of the population with high <i>K</i> (<i>K</i> = 0.85) on the fitness of mean fitness of low <i>K</i> individuals (<i>K</i> = 0.25; black lines), high <i>K</i> individuals (red lines), the whole population (dashed green lines), and the relative fitness of high K individuals (fitness of high <i>K</i>—fitness of low <i>K</i>; blue line lower panels) at the end of a generation, under A) <i>c</i> (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.e004" target="_blank">Equation 3</a>) = 0.683, B) <i>c</i> = 0.725 and C) <i>c</i> = 0.767.</p

    An Example of the Geometric Framework (GF).

    No full text
    <p>A visualisation of the GF [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.ref023" target="_blank">23</a>] used to track the nutritional state of a hypothetical individual. The graph area depicts the nutrient space available with two macronutrients; protein (P) is represented on the <i>x</i>-axis and carbohydrate (C) on the <i>y</i>-axis. The requirements of the individual with regards the two macronutrients are depicted by the Intake Target (IT; the red crosshair). In this instance the requirements for P and C are equal (75:75). An individual’s nutritional state is its (<i>x</i>, <i>y</i>) position in the nutrient space. The only way for an individual to move through the nutrient space to the IT is to eat foods. Three foods with differing P:C ratios are depicted by three food rails (solid black lines); Food A is high in C but low in P (P:C, 1:4); Food B is balanced (1:1); Food C is high in P but low in C (4:1). As an individual eats, its nutritional state moves through the nutrient space (depicted by the sequence of arrows) in parallel to the food rail for the food it is eating. Here, the individual has reached the IT by first eating Food A for steps one and two, then Food C for steps three and four, and finally on Food B for the step five. The individual could also have taken a more direct route to the IT by eating only Food B. This food is nutritionally balanced in regard to the individual’s IT. Alternatively, the individual may have eaten equal amounts of macronutrient from Foods C and A. These two foods are individually imbalanced but collectively complementary.</p

    The Models Implementation of the Geometric Framework (GF).

    No full text
    <p>An example of our implementation of the GF, redrawn from Lihoreau et al. [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.ref005" target="_blank">5</a>]. The <i>x</i> and <i>y</i> axes represent protein (P) and carbohydrate (C). The intake target (IT) is denoted by the red crosshair and the individual’s current nutritional state by the black point. The food rail for the food an individual is consuming is given by the black line (<i>f</i>) with the angle <i>α</i><sub><i>f</i></sub>. The amount of food an individual would eat to maximise its fitness is given by the individual’s appetite (<i>A</i>). <i>A</i> is governed by the nearest distance rule of compromise; an individual gets as close to the IT as the food rail allows [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.ref021" target="_blank">21</a>]. <i>A</i> is the scalar projection of the Euclidean distance between an individual’s nutritional state and the IT on to the food rail <i>f</i>. <i>A</i> is found by estimating the ‘ideal’ food rail that connects the individual’s nutritional state with the IT (dashed line with angle <i>α</i><sub><i>ideal</i></sub>), the magnitude of the vector along which an individual would travel to reach the IT (||<i>V</i><sub><i>T</i></sub>||) and the angle between <i>α</i><sub><i>f</i></sub> and <i>α</i><sub><i>ideal</i></sub> (<i>β</i>); <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.e005" target="_blank">Equation 4</a>. Note that the amount an individual can eat in one time step has a maximum value of <i>φ</i>.</p

    Model Results in Different 2-Food Environments.

    No full text
    <p>The effects of increasing competition, <i>c</i> (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.e004" target="_blank">Equation 3</a>), on the mean level of nutritional latitude, <i>K</i>, (and the 2.5<sup>th</sup> and 97.5<sup>th</sup> percentile; dashed line) that is stable under differing nutritional environments containing 2 foods. Data are based on 30 model runs. Data from levels of competition, above which the population could not consistently survive (i.e., extinction, given by a bold grey line), have been removed. A geometric visualisation of each environment is given; see <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.g002" target="_blank">Fig. 2</a> legend for details.</p

    Flow Diagram of Model Processes.

    No full text
    <p>A flow diagram of the model. After 500 iterations of these processes, a new generation begins. Note that all individuals undergo each process before the model moves on to the next process (i.e. for the details of each process see Details in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#sec012" target="_blank">Models</a>) and individuals are processed in a randomised sequence.</p

    Model Results in Different 3-Food Environments.

    No full text
    <p>The effects of increasing competition, <i>c</i> (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004111#pcbi.1004111.e004" target="_blank">Equation 3</a>), on the mean level of nutritional latitude, <i>K</i>, (± the 2.5<sup>th</sup> and 97.5<sup>th</sup> percentile; dashed line) that is stable under differing nutritional environments containing 3 foods. Data are based on 30 model runs. Data from levels of competition above which the population could not consistently survive (i.e., extinction, given by a bold grey line) have been removed. A geometric visualisation of each environment is given; lines and a crosshair depict food rails and the intake target, respectively.</p

    Model parameters and nomenclature.

    No full text
    <p>Parameters with our model, their notation, description and modelled values thereof.</p><p>Model parameters and nomenclature.</p
    corecore