29 research outputs found

    Modulation of the NOTCH1 Pathway by LUNATIC FRINGE Is Dominant over That of MANIC or RADICAL FRINGE

    No full text
    Fringes are glycosyltransferases that transfer a GlcNAc to O-fucose residues on Epidermal Growth Factor-like (EGF) repeats. Three Fringes exist in mammals: LUNATIC FRINGE (LFNG), MANIC FRINGE (MFNG), and RADICAL FRINGE (RFNG). Fringe modification of O-fucose on EGF repeats in the NOTCH1 (N1) extracellular domain modulates the activation of N1 signaling. Not all O-fucose residues of N1 are modified by all Fringes; some are modified by one or two Fringes and others not modified at all. The distinct effects on N1 activity depend on which Fringe is expressed in a cell. However, little data is available on the effect that more than one Fringe has on the modification of O-fucose residues and the resulting downstream consequence on Notch activation. Using mass spectral glycoproteomic site mapping and cell-based N1 signaling assays, we compared the effect of co-expression of N1 with one or more Fringes on modification of O-fucose and activation of N1 in three cell lines. Individual expression of each Fringe with N1 in the three cell lines revealed differences in modulation of the Notch pathway dependent on the presence of endogenous Fringes. Despite these cell-based differences, co-expression of several Fringes with N1 demonstrated a dominant effect of LFNG over MFNG or RFNG. MFNG and RFNG appeared to be co-dominant but strongly dependent on the ligands used to activate N1 and on the endogenous expression of Fringes. These results show a hierarchy of Fringe activity and indicate that the effect of MFNG and/or RFNG could be small in the presence of LFNG

    Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II

    No full text
    The severe pediatric disorder mucolipidosis II (ML-II; also known as I-cell disease) is caused by defects in mannose 6-phosphate (Man-6-P) biosynthesis. Patients with ML-II exhibit multiple developmental defects, including skeletal, craniofacial and joint abnormalities. To date, the molecular mechanisms that underlie these clinical manifestations are poorly understood. Taking advantage of a zebrafish model of ML-II, we previously showed that the cartilage morphogenesis defects in this model are associated with altered chondrocyte differentiation and excessive deposition of type II collagen, indicating that aspects of development that rely on proper extracellular matrix homeostasis are sensitive to decreases in Man-6-P biosynthesis. To further investigate the molecular bases for the cartilage phenotypes, we analyzed the transcript abundance of several genes in chondrocyte-enriched cell populations isolated from wild-type and ML-II zebrafish embryos. Increased levels of cathepsin and matrix metalloproteinase (MMP) transcripts were noted in ML-II cell populations. This increase in transcript abundance corresponded with elevated and sustained activity of several cathepsins (K, L and S) and MMP-13 during early development. Unlike MMP-13, for which higher levels of protein were detected, the sustained activity of cathepsin K at later stages seemed to result from its abnormal processing and activation. Inhibition of cathepsin K activity by pharmacological or genetic means not only reduced the activity of this enzyme but led to a broad reduction in additional protease activity, significant correction of the cartilage morphogenesis phenotype and reduced type II collagen staining in ML-II embryos. Our findings suggest a central role for excessive cathepsin K activity in the developmental aspects of ML-II cartilage pathogenesis and highlight the utility of the zebrafish system to address the biochemical underpinnings of metabolic disease

    Differentiation-related glycan epitopes identify discrete domains of the muscle glycocalyx

    No full text
    The neuromuscular junction (NMJ) is enriched with glycoproteins modified with N-acetylgalactosamine (GalNAc) residues, and four nominally GalNAc-specific plant lectins have historically been used to identify the NMJ and the utrophin–glycoprotein complex. However, little is known about the specific glycan epitopes on skeletal muscle that are bound by these lectins, the glycoproteins that bear these epitopes or how creation of these glycan epitopes is regulated. Here, we profile changes in cell surface glycosylation during muscle cell differentiation and identify distinct differences in the binding preferences of GalNAc-specific lectins, Wisteria floribunda agglutinin (WFA), Vicia villosa agglutinin (VVA), soybean agglutinin (SBA) and Dolichos biflorus agglutinin (DBA). While we find that all four GalNAc binding lectins specifically label the NMJ, each of the four lectins binds distinct sets of muscle glycoproteins; furthermore, none of the major adhesion complexes are required for binding of any of the four GalNAc-specific lectins. Analysis of glycosylation-related transcripts identified target glycosyltransferases and glycosidases that could potentially create GalNAc-containing epitopes; reducing expression of these transcripts by siRNA highlighted differences in lectin binding specificities. In addition, we found that complex N-glycans are required for binding of WFA and SBA to murine C2C12 myotubes and for WFA binding to wild-type skeletal muscle, but not for binding of VVA or DBA. These results demonstrate that muscle cell surface glycosylation is finely regulated during muscle differentiation in a domain- and acceptor-substrate-specific manner, suggesting that temporal- and site-specific glycosylation are important for skeletal muscle cell function

    Integration of genetic and metabolic features related to sialic acid metabolism distinguishes human breast cell subtypes

    No full text
    <div><p>In this report we use ‘high-flux’ tributanoyl-modified <i>N</i>-acetylmannosamine (ManNAc) analogs with natural N-acetyl as well as non-natural azido- and alkyne N-acyl groups (specifically, 1,3,4-O-Bu<sub>3</sub>ManNAc, 1,3,4-O-Bu<sub>3</sub>ManNAz, and 1,3,4-O-Bu<sub>3</sub>ManNAl respectively) to probe intracellular sialic acid metabolism in the near-normal MCF10A human breast cell line in comparison with earlier stage T-47D and more advanced stage MDA-MB-231 breast cancer lines. An integrated view of sialic acid metabolism was gained by measuring intracellular sialic acid production in tandem with transcriptional profiling of genes linked to sialic acid metabolism. The transcriptional profiling showed several differences between the three lines in the absence of ManNAc analog supplementation that helps explain the different sialoglycan profiles naturally associated with cancer. Only minor changes in mRNA transcript levels occurred upon exposure to the compounds confirming that metabolic flux alone can be a key determinant of sialoglycoconjugate display in breast cancer cells; this result complements the well-established role of genetic control (e.g., the transcription of STs) of sialylation abnormalities ubiquitously associated with cancer. A notable result was that the different cell lines produced significantly different levels of sialic acid upon exogenous ManNAc supplementation, indicating that feedback inhibition of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE)—generally regarded as the ‘gatekeeper’ enzyme for titering flux into sialic acid biosynthesis—is not the only regulatory mechanism that limits production of this sugar. A notable aspect of our metabolic glycoengineering approach is its ability to discriminate cell subtype based on intracellular metabolism by illuminating otherwise hidden cell type-specific features. We believe that this strategy combined with multi-dimensional analysis of sialic acid metabolism will ultimately provide novel insights into breast cancer subtypes and provide a foundation for new methods of diagnosis.</p></div

    Transcript levels of SAMG genes and correlated sialic acid levels in ManNAc analog-treated cells.

    No full text
    <p>(<b>A</b>) Heat maps of SAMG genes associated with Compartment 1 and Compartment 2 in each of the breast cell lines upon analog treatment as indicated. (<b>B</b>) Compartment 1 and 2 levels of sialic acid in analog-treated cells (100 mM for 24 h) with the same data plotted in (<b>C</b>) with an expanded y-axis for the MCF10A and MDA-MB-231 lines. Although not readily apparent in the heat map color scheme, several minor but statistically-significant differences in transcript levels were observed as indicated by the asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001 based on the statistical analysis presented in the supporting data <b>(Columns D-F in</b> <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0195812#pone.0195812.s007" target="_blank">S2 File</a>).</p
    corecore