9 research outputs found

    Guidelines for the standardized collection of predictor variables in studies for pediatric sepsis (guidelines)~Pediatric Sepsis Predictors Standardization (PS2) Working Group

    No full text
    These guidelines aim to maximize the efficiency of data-sharing collaborations in pediatric sepsis research by facilitating the standardization of data collection in predictors captured in future studies

    A proposed de-identification framework for a cohort of children presenting at a health facility in Uganda.

    No full text
    Data sharing has enormous potential to accelerate and improve the accuracy of research, strengthen collaborations, and restore trust in the clinical research enterprise. Nevertheless, there remains reluctancy to openly share raw data sets, in part due to concerns regarding research participant confidentiality and privacy. Statistical data de-identification is an approach that can be used to preserve privacy and facilitate open data sharing. We have proposed a standardized framework for the de-identification of data generated from cohort studies in children in a low-and-middle income country. We applied a standardized de-identification framework to a data sets comprised of 241 health related variables collected from a cohort of 1750 children with acute infections from Jinja Regional Referral Hospital in Eastern Uganda. Variables were labeled as direct and quasi-identifiers based on conditions of replicability, distinguishability, and knowability with consensus from two independent evaluators. Direct identifiers were removed from the data sets, while a statistical risk-based de-identification approach using the k-anonymity model was applied to quasi-identifiers. Qualitative assessment of the level of privacy invasion associated with data set disclosure was used to determine an acceptable re-identification risk threshold, and corresponding k-anonymity requirement. A de-identification model using generalization, followed by suppression was applied using a logical stepwise approach to achieve k-anonymity. The utility of the de-identified data was demonstrated using a typical clinical regression example. The de-identified data sets was published on the Pediatric Sepsis Data CoLaboratory Dataverse which provides moderated data access. Researchers are faced with many challenges when providing access to clinical data. We provide a standardized de-identification framework that can be adapted and refined based on specific context and risks. This process will be combined with moderated access to foster coordination and collaboration in the clinical research community

    A proposed de-identification framework for a cohort of children presenting at a health facility in Uganda

    No full text
    Data sharing has enormous potential to accelerate and improve the accuracy of research, strengthen collaborations, and restore trust in the clinical research enterprise. Nevertheless, there remains reluctancy to openly share raw data sets, in part due to concerns regarding research participant confidentiality and privacy. Statistical data de-identification is an approach that can be used to preserve privacy and facilitate open data sharing. We have proposed a standardized framework for the de-identification of data generated from cohort studies in children in a low-and-middle income country. We applied a standardized de-identification framework to a data sets comprised of 241 health related variables collected from a cohort of 1750 children with acute infections from Jinja Regional Referral Hospital in Eastern Uganda. Variables were labeled as direct and quasi-identifiers based on conditions of replicability, distinguishability, and knowability with consensus from two independent evaluators. Direct identifiers were removed from the data sets, while a statistical risk-based de-identification approach using the k-anonymity model was applied to quasi-identifiers. Qualitative assessment of the level of privacy invasion associated with data set disclosure was used to determine an acceptable re-identification risk threshold, and corresponding k-anonymity requirement. A de-identification model using generalization, followed by suppression was applied using a logical stepwise approach to achieve k-anonymity. The utility of the de-identified data was demonstrated using a typical clinical regression example. The de-identified data sets was published on the Pediatric Sepsis Data CoLaboratory Dataverse which provides moderated data access. Researchers are faced with many challenges when providing access to clinical data. We provide a standardized de-identification framework that can be adapted and refined based on specific context and risks. This process will be combined with moderated access to foster coordination and collaboration in the clinical research community. Author summary Open Data is data that anyone can access, use, and share. Open Data has the potential to facilitate collaboration, enrich research, and advance the analytic capacity to inform decisions. Importantly, Open Data plays a role in fulfilling obligations to research participants and honoring the nature of medical research as a public good. Leaders in industry, academia, and regulatory agencies recognize the value in increased transparency and are focusing on how to openly share data while minimizing the safety risks to research participants. For example, making data open can pose a privacy risk to research participants who have shared personal health information. This risk can be mitigated using data de-identification, a process of removing personal information from a data sets so that an individual’s identity is no longer apparent or cannot be reasonably ascertained from the data. We introduce a simple, statistical risk-based framework for de-identification of clinical data that can be followed by any researcher. This framework will guide open data sharing while improving the protection of research participants

    Table2_Smart triage: Development of a rapid pediatric triage algorithm for use in low-and-middle income countries.pdf

    No full text
    IntroductionEarly and accurate recognition of children at risk of progressing to critical illness could contribute to improved patient outcomes and resource allocation. In resource limited settings digital triage tools can support decision making and improve healthcare delivery. We developed a model for rapid identification of critically ill children at triage.MethodsThis was a prospective cohort study of acutely ill children presenting at Jinja Regional Referral Hospital in Eastern Uganda. Variables collected in the emergency department informed the development of a logistic model based on hospital admission using bootstrap stepwise regression. Low and high-risk thresholds for 90% minimum sensitivity and specificity, respectively generated three risk level categories. Performance was assessed using receiver operating characteristic curve analysis on a held-out test set generated by an 80:20 split with 10-fold cross validation. A risk stratification table informed clinical interpretation.ResultsThe model derivation cohort included 1,612 participants, with an admission rate of approximately 23%. The majority of admitted patients were under five years old and presenting with sepsis, malaria, or pneumonia. A 9-predictor triage model was derived: logit (p) =β€‰βˆ’32.888 + (0.252, square root of age) + (0.016, heart rate) + (0.819, temperature) + (βˆ’0.022, mid-upper arm circumference) + (0.048 transformed oxygen saturation) + (1.793, parent concern) + (1.012, difficulty breathing) + (1.814, oedema) + (1.506, pallor). The model afforded good discrimination, calibration, and risk stratification at the selected thresholds of 8% and 40%.ConclusionIn a low income, pediatric population, we developed a nine variable triage model with high sensitivity and specificity to predict who should be admitted. The triage model can be integrated into any digital platform and used with minimal training to guide rapid identification of critically ill children at first contact. External validation and clinical implementation are in progress.</p

    Datasheet1_Smart triage: Development of a rapid pediatric triage algorithm for use in low-and-middle income countries.pdf

    No full text
    IntroductionEarly and accurate recognition of children at risk of progressing to critical illness could contribute to improved patient outcomes and resource allocation. In resource limited settings digital triage tools can support decision making and improve healthcare delivery. We developed a model for rapid identification of critically ill children at triage.MethodsThis was a prospective cohort study of acutely ill children presenting at Jinja Regional Referral Hospital in Eastern Uganda. Variables collected in the emergency department informed the development of a logistic model based on hospital admission using bootstrap stepwise regression. Low and high-risk thresholds for 90% minimum sensitivity and specificity, respectively generated three risk level categories. Performance was assessed using receiver operating characteristic curve analysis on a held-out test set generated by an 80:20 split with 10-fold cross validation. A risk stratification table informed clinical interpretation.ResultsThe model derivation cohort included 1,612 participants, with an admission rate of approximately 23%. The majority of admitted patients were under five years old and presenting with sepsis, malaria, or pneumonia. A 9-predictor triage model was derived: logit (p) =β€‰βˆ’32.888 + (0.252, square root of age) + (0.016, heart rate) + (0.819, temperature) + (βˆ’0.022, mid-upper arm circumference) + (0.048 transformed oxygen saturation) + (1.793, parent concern) + (1.012, difficulty breathing) + (1.814, oedema) + (1.506, pallor). The model afforded good discrimination, calibration, and risk stratification at the selected thresholds of 8% and 40%.ConclusionIn a low income, pediatric population, we developed a nine variable triage model with high sensitivity and specificity to predict who should be admitted. The triage model can be integrated into any digital platform and used with minimal training to guide rapid identification of critically ill children at first contact. External validation and clinical implementation are in progress.</p

    Table1_Smart triage: Development of a rapid pediatric triage algorithm for use in low-and-middle income countries.pdf

    No full text
    IntroductionEarly and accurate recognition of children at risk of progressing to critical illness could contribute to improved patient outcomes and resource allocation. In resource limited settings digital triage tools can support decision making and improve healthcare delivery. We developed a model for rapid identification of critically ill children at triage.MethodsThis was a prospective cohort study of acutely ill children presenting at Jinja Regional Referral Hospital in Eastern Uganda. Variables collected in the emergency department informed the development of a logistic model based on hospital admission using bootstrap stepwise regression. Low and high-risk thresholds for 90% minimum sensitivity and specificity, respectively generated three risk level categories. Performance was assessed using receiver operating characteristic curve analysis on a held-out test set generated by an 80:20 split with 10-fold cross validation. A risk stratification table informed clinical interpretation.ResultsThe model derivation cohort included 1,612 participants, with an admission rate of approximately 23%. The majority of admitted patients were under five years old and presenting with sepsis, malaria, or pneumonia. A 9-predictor triage model was derived: logit (p) =β€‰βˆ’32.888 + (0.252, square root of age) + (0.016, heart rate) + (0.819, temperature) + (βˆ’0.022, mid-upper arm circumference) + (0.048 transformed oxygen saturation) + (1.793, parent concern) + (1.012, difficulty breathing) + (1.814, oedema) + (1.506, pallor). The model afforded good discrimination, calibration, and risk stratification at the selected thresholds of 8% and 40%.ConclusionIn a low income, pediatric population, we developed a nine variable triage model with high sensitivity and specificity to predict who should be admitted. The triage model can be integrated into any digital platform and used with minimal training to guide rapid identification of critically ill children at first contact. External validation and clinical implementation are in progress.</p

    Table3_Smart triage: Development of a rapid pediatric triage algorithm for use in low-and-middle income countries.pdf

    No full text
    IntroductionEarly and accurate recognition of children at risk of progressing to critical illness could contribute to improved patient outcomes and resource allocation. In resource limited settings digital triage tools can support decision making and improve healthcare delivery. We developed a model for rapid identification of critically ill children at triage.MethodsThis was a prospective cohort study of acutely ill children presenting at Jinja Regional Referral Hospital in Eastern Uganda. Variables collected in the emergency department informed the development of a logistic model based on hospital admission using bootstrap stepwise regression. Low and high-risk thresholds for 90% minimum sensitivity and specificity, respectively generated three risk level categories. Performance was assessed using receiver operating characteristic curve analysis on a held-out test set generated by an 80:20 split with 10-fold cross validation. A risk stratification table informed clinical interpretation.ResultsThe model derivation cohort included 1,612 participants, with an admission rate of approximately 23%. The majority of admitted patients were under five years old and presenting with sepsis, malaria, or pneumonia. A 9-predictor triage model was derived: logit (p) =β€‰βˆ’32.888 + (0.252, square root of age) + (0.016, heart rate) + (0.819, temperature) + (βˆ’0.022, mid-upper arm circumference) + (0.048 transformed oxygen saturation) + (1.793, parent concern) + (1.012, difficulty breathing) + (1.814, oedema) + (1.506, pallor). The model afforded good discrimination, calibration, and risk stratification at the selected thresholds of 8% and 40%.ConclusionIn a low income, pediatric population, we developed a nine variable triage model with high sensitivity and specificity to predict who should be admitted. The triage model can be integrated into any digital platform and used with minimal training to guide rapid identification of critically ill children at first contact. External validation and clinical implementation are in progress.</p

    Smart triage: triage and management of sepsis in children using the point-of-care Pediatric Rapid Sepsis Trigger (PRST) tool

    No full text
    Background: Sepsis is the leading cause of death and disability in children. Every hour of delay in treatment is associated with an escalating risk of morbidity and mortality. The burden of sepsis is greatest in low- and middle-income countries where timely treatment may not occur due to delays in diagnosis and prioritization of critically ill children. To circumvent these challenges, we propose the development and clinical evaluation of a digital triage tool that will identify high risk children and reduce time to treatment. We will also implement and clinically validate a Radio-Frequency Identification system to automate tracking of patients. The mobile platform (mobile device and dashboard) and automated patient tracking system will create a low cost, highly scalable solution for critically ill children, including those with sepsis. Methods: This is pre-post intervention study consisting of three phases. Phase I will be a baseline period where data is collected on key predictors and outcomes before implementation of the digital triage tool. In Phase I, there will be no changes to healthcare delivery processes in place at the study hospitals. Phase II will involve model derivation, technology development, and usability testing. Phase III will be the intervention period where data is collected on key predictors and outcomes after implementation of the digital triage tool. The primary outcome, time to treatment initiation, will be compared to assess effectiveness of the digital health intervention. Discussion: Smart technology has the potential to overcome the barrier of limited clinical expertise in the identification of the child at risk. This mobile health platform, with sensors and data-driven applications, will provide real-time individualized risk prediction to rapidly triage patients and facilitate timely access to life-saving treatments for children in low- and middle-income countries, where specialists are not regularly available and deaths from sepsis are common. Trial registration: Clinical Trials.gov Identifier: NCT04304235, Registered 11 March 2020.Applied Science, Faculty ofMedicine, Faculty ofOther UBCNon UBCElectrical and Computer Engineering, Department ofObstetrics and Gynaecology, Department ofPediatrics, Department ofReviewedFacult

    External validation of a paediatric Smart triage model for use in resource limited facilities.

    No full text
    Models for digital triage of sick children at emergency departments of hospitals in resource poor settings have been developed. However, prior to their adoption, external validation should be performed to ensure their generalizability. We externally validated a previously published nine-predictor paediatric triage model (Smart Triage) developed in Uganda using data from two hospitals in Kenya. Both discrimination and calibration were assessed, and recalibration was performed by optimizing the intercept for classifying patients into emergency, priority, or non-urgent categories based on low-risk and high-risk thresholds. A total of 2539 patients were eligible at Hospital 1 and 2464 at Hospital 2, and 5003 for both hospitals combined; admission rates were 8.9%, 4.5%, and 6.8%, respectively. The model showed good discrimination, with area under the receiver-operator curve (AUC) of 0.826, 0.784 and 0.821, respectively. The pre-calibrated model at a low-risk threshold of 8% achieved a sensitivity of 93% (95% confidence interval, (CI):89%-96%), 81% (CI:74%-88%), and 89% (CI:85%-92%), respectively, and at a high-risk threshold of 40%, the model achieved a specificity of 86% (CI:84%-87%), 96% (CI:95%-97%), and 91% (CI:90%-92%), respectively. Recalibration improved the graphical fit, but new risk thresholds were required to optimize sensitivity and specificity.The Smart Triage model showed good discrimination on external validation but required recalibration to improve the graphical fit of the calibration plot. There was no change in the order of prioritization of patients following recalibration in the respective triage categories. Recalibration required new site-specific risk thresholds that may not be needed if prioritization based on rank is all that is required. The Smart Triage model shows promise for wider application for use in triage for sick children in different settings
    corecore