14 research outputs found

    The Apparent Requirement for Protein Synthesis during G2 Phase Is due to Checkpoint Activation

    Get PDF
    Protein synthesis inhibitors have long been known to prevent G2 phase cells from entering mitosis. Lockhead et al. demonstrate that this G2 arrest is due to the activation of p38 MAPK, not insufficient protein synthesis, arguing that protein synthesis in G2 phase is not absolutely required for mitotic entry

    Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization

    Get PDF
    Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography

    Proteome fractionation and purification flow chart.

    No full text
    <p>Approximately 500 g of <i>E. coli</i> cells were lysed at pH 7 using a microfluidizer and the cell debris pelleted. The supernatant was applied to a tangential flow column with a nominal molecular weight cut off of 500 kDa, generating 2 fractions (retentate and flow through). The fraction above 500 kDa (retentate) was further purified via sucrose gradients, size exclusion, and ion exchange chromatography prior to crystallization trials. The fraction less than 500 kDa was applied to multiple affinity and ion exchange columns followed by phenyl sepharose, ion exchange, and size exclusion prior to crystallization trials in microfluidic chips.</p

    Crystallization of native source <i>E. coli</i> proteins.

    No full text
    <p>(A) Capillary electrophoresis of purified protein fractions. White stars indicate samples successfully crystallized and black stars represent solved structures. (B) Crystals of 5-keto-4-deoxyuronate isomerase crystallized from fractions of varying purity. Crystal quality was not always correlated with sample purity. (C) Resolution of the data collected versus percent purity of the starting sample based on quantification of protein concentrations by capillary gel electrophoresis with the Caliper system. Sample purity did not correlate with higher resolution data.</p

    BglA dimer and putative active site.

    No full text
    <p>Left, BglA dimer with the putative active site outlined in a gray box. Right, close up of the active site with glucose-6-phosphate modeled based of the position of the sulfate ion from crystallization. Active site residues are depicted as ball-and-stick. Putative hydrogen bonds to the substrate are drawn as dashed lines.</p
    corecore