3 research outputs found

    Therapeutic Development of Mesenchymal Stem Cells or Their Extracellular Vesicles to Inhibit Autoimmune-Mediated Inflammatory Processes in Systemic Lupus Erythematosus

    No full text
    Since being discovered over half a century ago, mesenchymal stem cells (MSCs) have been investigated extensively to characterize their cellular and physiological influences. MSCs have been shown to possess immunosuppressive capacity through inhibiting lymphocyte activation/proliferation and proinflammatory cytokine secretion while simultaneously demonstrating limited allogenic reactivity, which subsequently led to the evaluation of therapeutic feasibility to treat inflammatory diseases. Although regulatory constraints have restricted MSC development pharmacologically, limited clinical studies have shown encouraging results using MSC infusions to treat systemic lupus erythematosus (SLE); but, more trials will have to be performed to conclusively determine the clinical efficacy of MSCs to treat SLE. Moreover, there are some data to suggest that MSCs possess tumorigenic potential and that the immunosuppressive influence can be dramatically affected by both donor variability and ex vivo expansion. Given that recent studies have found that the immunosuppressive effects of MSCs are a result, at least in part, to extracellular vesicle (EV) secretion, the use of MSC-derived EVs has been suggested as a cell-free therapeutic alternative. Despite the positive data observed using EVs isolated from human MSCs to suppress inflammatory responses in vitro and in inhibiting autoimmune disease pathogenesis in preclinical work, there are no studies to date examining EVs from MSCs to treat SLE in humans or animal models. Considering that EVs are not subject to the strict regulatory constraints of stem cell-based pharmacological development and are more readily standardized with regard to industrial-scale production and storage, this review outlines the anti-inflammatory biology of MSCs and the scientific evidence supporting the potential use of EVs derived from human MSCs to treat patients with SLE

    Mechanosignaling in Bone Health, Trauma and Inflammation

    Get PDF
    SIGNIFICANCE: Mechanosignaling is vital for maintaining the structural integrity of bone under physiologic conditions. These signals activate and suppress multiple signaling cascades regulating bone formation and resorption. Understanding these pathways is of prime importance to exploit their therapeutic potential in disorders associated with bone loss due to disuse, trauma, or disruption of homeostatic mechanisms. RECENT ADVANCES: In the case of cells of the bone, an impressive amount of data has been generated that provides evidence of a complex mechanism by which mechanical signals can maintain or disrupt cellular homeostasis by driving transcriptional regulation of growth factors, matrix proteins and inflammatory mediators in health and inflammation. Mechanical signals act on cells in a magnitude dependent manner to induce bone deposition or resorption. During health, physiological levels of these signals are essential for maintaining bone strength and architecture, whereas during inflammation, similar signals can curb inflammation by suppressing the nuclear factor kappa B (NF-κB) signaling cascade, while upregulating matrix synthesis via mothers against decapentaplegic homolog and/or Wnt signaling cascades. Contrarily, excessive mechanical forces can induce inflammation via activation of the NF-κB signaling cascade. CRITICAL ISSUES: Given the osteogenic potential of mechanical signals, it is imperative to exploit their therapeutic efficacy for the treatment of bone disorders. Here we review select signaling pathways and mediators stimulated by mechanical signals to modulate the strength and integrity of the bone. FUTURE DIRECTIONS: Understanding the mechanisms of mechanotransduction and its effects on bone lay the groundwork for development of nonpharmacologic mechanostimulatory approaches for osteodegenerative diseases and optimal bone health
    corecore