15 research outputs found

    Punctured Two-Dimensional Sheets for Harvesting Blue Energy

    Get PDF
    The challenges of global climate change and the world’s growing demand for energy have brought the need for new renewable energy sources to the top of the international community’s agenda. We have known for many centuries that energy is released upon mixing seawater and freshwater, yet it was just a few decades ago that it became clear how this energy can be converted into electricity instead of heat. As a result, the blue energy rush has raised and set new strategies in different science and technology sectors, leading to the construction of a new generation of plants and other technological investments. Among many approaches, pressure-retarded osmosis has emerged as a promising method to collect the largest amount of produced blue energy. In this Perspective, we highlight the advances in the development of ultrathin membranes based on two-dimensional materials. We discuss the most relevant synthetic methods devised to generate atomically thin membranes for pressure-retarded osmosis and retarded electrodialysis applications, and we provide some critical views on the greatest challenges in this thrilling research area

    Chemical sensing with 2D materials

    Get PDF
    During the last decade, two-dimensional materials (2DMs) have attracted great attention due to their unique chemical and physical properties, which make them appealing platforms for diverse applications in opto-electronic devices, energy generation and storage, and sensing. Among their various extraordinary properties, 2DMs possess high surface area-to-volume ratios and ultra-high surface sensitivity to the environment, which are key characteristics for applications in chemical sensing. Furthermore, 2DMs’ superior electrical and optical properties, combined with their excellent mechanical characteristics such as robustness and flexibility, make these materials ideal components for the fabrication of a new generation of high-performance chemical sensors. Depending on the specific device, 2DMs can be tailored to interact with various chemical species at the non-covalent level, making them powerful platforms for fabricating devices exhibiting a high sensitivity towards detection of various analytes including gases, ions and small biomolecules. Here, we will review the most enlightening recent advances in the field of chemical sensors based on atomically-thin 2DMs and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and sensing devices

    Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross-Link Agents

    Get PDF
    A new technique for direct patterning of functional organic polymers using commercial photolithography setups with a minimal loss of the materials' performances is reported. This result is achieved through novel cross-link agents made by boron- and fluorine-containing heterocycles that can react between themselves upon UV- and white-light exposure

    Graphene Oxide Hybrid with Sulfur–Nitrogen Polymer for High-Performance Pseudocapacitors

    Get PDF
    Toward the introduction of fast faradaic pseudocapacitive behavior and the increase of the specific capacitance of carbon-based electrodes, we covalently functionalized graphene oxide with a redox active thiourea-formaldehyde polymer, yielding a multifunctional hybrid system. The multiscale physical and chemical characterization of the novel 3-dimensional hybrid revealed high material porosity with high specific surface area (402 m2 g–1) and homogeneous element distribution. The presence of multiple functional groups comprising sulfur, nitrogen, and oxygen provide additional contribution of Faradaic redox reaction in supercapacity performance, leading to a high effective electrochemical pseudocapacitance. Significantly, our graphene-based 3-dimensional thiourea-formaldehyde hybrid exhibited specific capacitance as high as 400 F g–1, areal capacitance of 160 mF cm–2, and an energy density of 11.1 mWh cm–3 at scan rate of 1 mV s–1 with great capacitance retention (100%) after 5000 cycles at scan rate of 100 mV s–1

    3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction

    Get PDF
    ObjectiveThe extent of response to neoadjuvant chemotherapy predicts survival in Ewing sarcoma. This study focuses on MRI radiomics of skeletal Ewing sarcoma and aims to investigate feature reproducibility and machine learning prediction of response to neoadjuvant chemotherapy. Materials and methodsThis retrospective study included thirty patients with biopsy-proven skeletal Ewing sarcoma, who were treated with neoadjuvant chemotherapy before surgery at two tertiary sarcoma centres. 7 patients were poor responders and 23 were good responders based on pathological assessment of the surgical specimen. On pre-treatment T1-weighted and T2-weighted MRI, 2D and 3D tumour segmentations were manually performed. Features were extracted from original and wavelet-transformed images. Feature reproducibility was assessed through small geometrical transformations of the regions of interest mimicking multiple manual delineations, and intraclass correlation coefficient >0.75 defined feature reproducibility. Feature selection also consisted of collinearity and significance analysis. After class balancing in the training cohort, three machine learning classifiers were trained and tested on unseen data using hold-out cross-validation. Results1303 (77%) 3D and 620 (65%) 2D radiomic features were reproducible. 4 3D and 4 2D features passed feature selection. Logistic regression built upon 3D features achieved the best performance with 85% accuracy (AUC=0.9) in predicting response to neoadjuvant chemotherapy. ConclusionCompared to 2D approach, 3D MRI radiomics of Ewing sarcoma had superior reproducibility and higher accuracy in predicting response to neoadjuvant chemotherapy, particularly when using logistic regression classifier

    Hybrid Copper-Nanowire–Reduced-Graphene-Oxide Coatings: A “Green Solution” Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics

    Get PDF
    This study reports a novel green chemistry approach to assemble copper-nanowires/reduced-graphene-oxide hybrid coatings onto inorganic and organic supports. Such films are robust and combine sheet resistances ( 70%) that are rivalling those of indium–tin oxide. These electrodes are suitable for flexible electronic applications as they show a sheet resistance change of <4% after 10 000 bending cycles at a bending radius of 1.0 cm, when supported on polyethylene terephthalate foils. Significantly, the wet-chemistry method involves the preparation of dispersions in environmentally friendly solvents and avoids the use of harmful reagents. Such inks are processed at room temperature on a wide variety of surfaces by spray coating. As a proof-of-concept, this study demonstrates the successful use of such coatings as electrodes in high-performance electrochromic devices. The robustness of the electrodes is demonstrated by performing several tens of thousands of cycles of device operation. These unique conducting coatings hold potential for being exploited as transparent electrodes in numerous optoelectronic applications such as solar cells, light-emitting diodes, and displays

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)

    Ultrafast and Highly Sensitive Chemically Functionalized Graphene Oxide-Based Humidity Sensors: Harnessing Device Performances via the Supramolecular Approach

    Get PDF
    Humidity sensors have been gaining increasing attention because of their relevance for well-being. To meet the ever-growing demand for new cost-efficient materials with superior performances, graphene oxide (GO)-based relative humidity sensors have emerged recently as low-cost and highly sensitive devices. However, current GO-based sensors suffer from important drawbacks including slow response and recovery, as well as poor stability. Interestingly, reduced GO (rGO) exhibits higher stability, yet accompanied by a lower sensitivity to humidity due to its hydrophobic nature. With the aim of improving the sensing performances of rGO, here we report on a novel generation of humidity sensors based on a simple chemical modification of rGO with hydrophilic moieties, i.e., triethylene glycol chains. Such a hybrid material exhibits an outstandingly improved sensing performance compared to pristine rGO such as high sensitivity (31% increase in electrical resistance when humidity is shifted from 2 to 97%), an ultrafast response (25 ms) and recovery in the subsecond timescale, low hysteresis (1.1%), excellent repeatability and stability, as well as high selectivity toward moisture. Such highest-key-performance indicators demonstrate the full potential of two-dimensional (2D) materials when decorated with suitably designed supramolecular receptors to develop the next generation of chemical sensors of any analyte of interest

    Sensitization of Nanocrystalline TiO2with Multibranched Organic Dyes and Co(III)/(II) Mediators: Strategies to Improve Charge Collection Efficiency

    No full text
    The photoelectrochemical properties of thiophene-triphenylamine (TTPA) sensitizers (TTPA1-3) used in association with different cobalt based mediators, including kinetically fast shuttles such as [Co(bpy)3] 3+/2+ and [Co(phen)3]3+/2+ and sterically hindered couples like [Co(dtb)3]3+/2+ were studied by combining molecular modeling, spectroscopic, and photoelectrochemical techniques. The results indicate that the presence of multiple anchoring points on the dye structure improves its adsorption stability onto TiO2 but induces a pseudoplanar adsorption geometry which is not suited to insulate properly the surface of the semiconductor and of the back contact, against electron recombination; particularly when kinetically fast shuttles are employed. This drawback could be successfully countered by exploiting both a compact blocking underlayer and the chemisorption of octyl triethoxysilane (Si-C8) acting as a molecular barrier onto the TiO2 surface, thus limiting the access of the oxidized mediator to the exposed titania sites. These treatments improve the electron collection efficiency up to 80-90% with the I-/I3 - couple and up to 70% when the [Co(dtb)3]3+/2+ mediator was used

    Sensitization of Nanocrystalline TiO<sub>2</sub> with Multibranched Organic Dyes and Co(III)/(II) Mediators: Strategies to Improve Charge Collection Efficiency

    No full text
    The photoelectrochemical properties of thiophene-triphenylamine (TTPA) sensitizers (<b>TTPA1–3</b>) used in association with different cobalt based mediators, including kinetically fast shuttles such as [Co­(bpy)<sub>3</sub>]<sup>3+/2+</sup> and [Co­(phen)<sub>3</sub>]<sup>3+/2+</sup> and sterically hindered couples like [Co­(dtb)<sub>3</sub>]<sup>3+/2+</sup> were studied by combining molecular modeling, spectroscopic, and photoelectrochemical techniques. The results indicate that the presence of multiple anchoring points on the dye structure improves its adsorption stability onto TiO<sub>2</sub> but induces a pseudoplanar adsorption geometry which is not suited to insulate properly the surface of the semiconductor and of the back contact, against electron recombination; particularly when kinetically fast shuttles are employed. This drawback could be successfully countered by exploiting both a compact blocking underlayer and the chemisorption of octyl triethoxysilane (Si–C8) acting as a molecular barrier onto the TiO<sub>2</sub> surface, thus limiting the access of the oxidized mediator to the exposed titania sites. These treatments improve the electron collection efficiency up to 80–90% with the I<sup>–</sup>/I<sub>3</sub><sup>–</sup> couple and up to 70% when the [Co­(dtb)<sub>3</sub>]<sup>3+/2+</sup> mediator was used
    corecore