20 research outputs found

    Regioselective iodination of aryl amines using 1,4-dibenzyl-1,4-diazoniabicyclo [2.2.2] octane dichloroiodate in solution and under solvent-free conditions

    Get PDF
    1,4-Dibenzyl-1,4-diazoniabicyclo[2.2.2]octane dichloroiodate is an efficient and regioselective reagent for iodination of aryl amines. A wide variety of aryl amines in reaction with this reagent afforded regioselectively iodinated products. The iodination reaction can be carried out in solution or under solvent-free condition at room temperature. KEY WORDS:  Regioselective iodination, Aryl amines, 1,4-Dibenzyl-1,4-diazoniabicyclo [2.2.2] octane dichloroiodate,  Solvent-free conditions Bull. Chem. Soc. Ethiop. 2015, 29(1), 157-162DOI: http://dx.doi.org/10.4314/bcse.v29i1.1

    One-pot synthesis of 2,4,5-trisubstituted imidazole derivatives catalyzed by btppc under solvent-free conditions

    Get PDF
    A simple and efficient method for one-pot synthesis of lophine derivatives (2,4,5-trisubstituted imidazoles) by using the benzyltriphenylphosphonium chloride (BTPPC), as a catalyst, under solvent-free conditions is described. BTPPC is an available and inexpensive catalyst; also, it can be easily supplied. This procedure led to the corresponding 2,4,5-trisubstituted imidazoles products in high yields

    Neuromatch Academy: Teaching Computational Neuroscience with Global Accessibility

    Get PDF
    Neuromatch Academy (NMA) designed and ran a fully online 3-week Computational Neuroscience Summer School for 1757 students with 191 teaching assistants (TAs) working in virtual inverted (or flipped) classrooms and on small group projects. Fourteen languages, active community management, and low cost allowed for an unprecedented level of inclusivity and universal accessibility

    Overexpression of MiR-138 inhibits cell growth and induces caspase-mediated apoptosis in acute promyelocytic leukemia cell line

    No full text
    Dysregulated expression of miRNAs can play a vital role in pathogenesis of leukemia. The shortened telomere length, and elevated telomerase activity in acute promyelocytic leukemia cells are mainly indicative of extensive proliferative activity. This study aimed to investigate the effect of overexpression of miR-138 on telomerase activity, and cell proliferation of acute promyelocytic leukemia NB4 cells. MiR-138 was overexpressed in NB4 cells using GFP hsa-miR-138-expressing lentiviruses. hTERT mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis. For evaluation of apoptosis, annexin-V staining and activation of caspases were assessed using flow cytometry and western blot analysis, respectively. Our data demonstrate that overexpression of miR-138 attenuated the hTERT mRNA and protein expression levels. In addition, cell growth was inhibited, and malignant cells underwent caspase mediated-apoptosis in response to miR-138 overexpression. These findings suggest that loss of miR-138 expression may be associated with increased telomerase activity in NB4 cells. Therefore, strategies for up-regulation of miR-138 may result in inhibition of malignant cell growth, and provide a promising therapeutic approach for acute promyelocytic leukemia. © 2018 Babol University of Medical Sciences

    Overexpression of MiR-138 inhibits cell growth and induces caspase-mediated apoptosis in acute promyelocytic leukemia cell line

    No full text
    Dysregulated expression of miRNAs can play a vital role in pathogenesis of leukemia. The shortened telomere length, and elevated telomerase activity in acute promyelocytic leukemia cells are mainly indicative of extensive proliferative activity. This study aimed to investigate the effect of overexpression of miR-138 on telomerase activity, and cell proliferation of acute promyelocytic leukemia NB4 cells. MiR-138 was overexpressed in NB4 cells using GFP hsa-miR-138-expressing lentiviruses. hTERT mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis. For evaluation of apoptosis, annexin-V staining and activation of caspases were assessed using flow cytometry and western blot analysis, respectively. Our data demonstrate that overexpression of miR-138 attenuated the hTERT mRNA and protein expression levels. In addition, cell growth was inhibited, and malignant cells underwent caspase mediated-apoptosis in response to miR-138 overexpression. These findings suggest that loss of miR-138 expression may be associated with increased telomerase activity in NB4 cells. Therefore, strategies for up-regulation of miR-138 may result in inhibition of malignant cell growth, and provide a promising therapeutic approach for acute promyelocytic leukemia. © 2018 Babol University of Medical Sciences

    Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in-situ x-ray tomography

    No full text
    International audienceThis work presents results from a series of triaxial compression tests on two quartz sands (differing principally in grain shape), at confining pressures high enough to cause grain breakage during shearing. Tests are performed inside an x-ray scanner, which allows specimens to be imaged non-destructively as they deform. Observation of the acquired images clearly shows different mechanisms of deformation, including shearing, dilation, compaction and grain breakage. These mechanisms are investigated quantitatively through 3D measurements of local porosity, as well as strain (obtained by 3D Digital Image Correlation), which is analysed in terms of volumetric and shear components. These tools allow the transition between macroscopically dilative (typically of a dense sand at low mean stress) and compactive behaviour to be investigated. The analysis reveals that at the high end of the confining pressure range studied (100 to 7000 kPa) the more rounded sand deforms with highly localised shear and volumetric strain-the porosity fields show a dilative band within which a compactive region (due to grain crushing) grows. The more angular material shows shear strain localisation, however its faster transition to compactive behaviour (due to a higher propensity for individual grains to crush) translates to much more distributed compactive volumetric strain

    DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms

    No full text
    DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways. © 202

    VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia

    No full text
    Activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway as a survival signaling cascade is a prominent feature of cancers such as acute lymphoblastic leukemia (ALL). In patients with B-cell precursor-ALL (BCP-ALL), the high activity of the pathway correlates with the weak response to anti-leukemic drugs and relapse as a result of downstream prosurvival pathway activation, such as nuclear factor kappa B (NF-κB). Recent targeted therapy (PI3K/mTOR inhibitors) in combination with a multifunctional conventional chemotherapeutic drug may be useful for treatment of BCP-ALL patients. In the current study, the potential of a subtoxic dose (0.2 μM) of arsenic trioxide (ATO) in combination with VS-5584 (a highly potent PI3K/mTOR dual inhibitor) was tested for blocking of the PI3K/Akt/mTOR pathway, inhibition of NF-κB activation and induction of apoptosis and cell-cycle arrest. The data indicate that VS-5584 as a PI3K/mTOR inhibitor inhibited cell proliferation and induced apoptosis in NALM-6 cells by means of NF-κB transcriptional activity suppression. This apoptotic process markedly increased 72 h after administration of the subtoxic dose of ATO. We also showed that concomitant treatment of VS-5584 and the subtoxic dose of ATO significantly inhibited phosphorylation of NF-κB inhibitor alpha (IκBα) and S6 ribosomal protein (S6) as the downstream proteins of the PI3K/Akt/mTOR pathway. Combining VS-5584 and a subtoxic dose of ATO also resulted in down expression of the NF-κB target genes involved in cell proliferation and survival. These results indicate that incorporation of VS-5584/ATO combination into BCP-ALL therapeutic protocols can improve treatment and the survival of patients. © 2018 Elsevier Masson SA

    Rapid induction of neural differentiation in human umbilical cord matrix mesenchymal stem cells by cAMP-elevating agents

    No full text
    Human umbilical cord matrix (hUCM) is considered as a promising source of mesenchymal stem cells (MSCs) due to several advantages over other tissues. The potential of neural differentiation of hUCM-MSCs is of great interest in the context of treating neurodegenerative diseases. In recent years, considerable efforts have been made to establish in vitro conditions for improving the differentiation of hUCM-MSCs toward neuronal cells. In the present study, we evaluated the neural differentiation potential of hUCM-MSCs in the presence of cAMPelevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). hUCM-MSCs were isolated from fetal umbilical cord and characterized by flow cytometry analysis for mesenchymal specific markers. Mesodermal differentiation potential was assessed through selective media with lineage-specific induction factors. For assessment of neural differentiation, cells were cultured in the presence of cAMP-elevating agents for 8 and 24 h. The neuronal differentiated MSCs were characterized for neuronal specific markers by immunocytochemistry and western blotting. Isolated hUCM-MSCs were found positive for mesenchymal markers (CD73, CD90, and CD105) while negative for hematopoietic markers (CD34 and CD45). Following neural induction, most cells represented neural-like cells morphology. Neural markers including -tubulin III (Tuj-1), neuron-specific enolase (NSE), microtubule-associated protein-2 (MAP-2) and nestin were expressed in treated cells with respect to control group. The astrocyte specific marker, glial fibrillary acidic protein (GFAP) was also shown by immunofluorescence in treated cells. (These findings demonstrate that hUCM-MSCs have the ability to rapidly differentiate into neural cell types of neuron-like cells and astrocytes by cAMP-elevating agents without the presence of growth factors
    corecore