905 research outputs found

    The Fibonacci scheme for fault-tolerant quantum computation

    Full text link
    We rigorously analyze Knill's Fibonacci scheme for fault-tolerant quantum computation, which is based on the recursive preparation of Bell states protected by a concatenated error-detecting code. We prove lower bounds on the threshold fault rate of .67\times 10^{-3} for adversarial local stochastic noise, and 1.25\times 10^{-3} for independent depolarizing noise. In contrast to other schemes with comparable proved accuracy thresholds, the Fibonacci scheme has a significantly reduced overhead cost because it uses postselection far more sparingly.Comment: 24 pages, 10 figures; supersedes arXiv:0709.3603. (v2): Additional discussion about the overhead cos

    Fault-tolerant quantum computation versus Gaussian noise

    Get PDF
    We study the robustness of a fault-tolerant quantum computer subject to Gaussian non-Markovian quantum noise, and we show that scalable quantum computation is possible if the noise power spectrum satisfies an appropriate "threshold condition." Our condition is less sensitive to very-high-frequency noise than previously derived threshold conditions for non-Markovian noise.Comment: 30 pages, 6 figure

    The Non-Equilibrium Reliability of Quantum Memories

    Full text link
    The ability to store quantum information without recourse to constant feedback processes would yield a significant advantage for future implementations of quantum information processing. In this paper, limitations of the prototypical model, the Toric code in two dimensions, are elucidated along with a sufficient condition for overcoming these limitations. Specifically, the interplay between Hamiltonian perturbations and dynamically occurring noise is considered as a system in its ground state is brought into contact with a thermal reservoir. This proves that when utilizing the Toric code on N^2 qubits in a 2D lattice as a quantum memory, the information cannot be stored for a time O(N). In contrast, the 2D Ising model protects classical information against the described noise model for exponentially long times. The results also have implications for the robustness of braiding operations in topological quantum computation.Comment: 4 pages. v3: published versio

    Simple proof of fault tolerance in the graph-state model

    Get PDF
    We consider the problem of fault tolerance in the graph-state model of quantum computation. Using the notion of composable simulations, we provide a simple proof for the existence of an accuracy threshold for graph-state computation by invoking the threshold theorem derived for quantum circuit computation. Lower bounds for the threshold in the graph-state model are then obtained from known bounds in the circuit model under the same noise process.Comment: 6 pages, 2 figures, REVTeX4. (v4): Minor revisions and new title; published versio

    Fault-tolerant quantum computation against biased noise

    Get PDF
    We formulate a scheme for fault-tolerant quantum computation that works effectively against highly biased noise, where dephasing is far stronger than all other types of noise. In our scheme, the fundamental operations performed by the quantum computer are single-qubit preparations, single-qubit measurements, and conditional-phase (CPHASE) gates, where the noise in the CPHASE gates is biased. We show that the accuracy threshold for quantum computation can be improved by exploiting this noise asymmetry; e.g., if dephasing dominates all other types of noise in the CPHASE gates by four orders of magnitude, we find a rigorous lower bound on the accuracy threshold higher by a factor of 5 than for the case of unbiased noise

    Effective fault-tolerant quantum computation with slow measurements

    Get PDF
    How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1,000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability.Comment: 9 pages, 11 figures. v2: small changes and reference addition
    • …
    corecore