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Quantum error-correcting codes have a distance parameter, conveying the minimum number of single spin
errors that could cause error correction to fail. However, the success thresholds of the finite per-qubit error
rate that have been proven for the likes of the toric code require them to work well beyond this limit. We
argue that, without the assumption of being below the distance limit, the success of error correction is not
only contingent on the noise model, but what the noise model is believed to be. Any discrepancy must
adversely affect the threshold rate, and risks invalidating existing threshold theorems. We prove that for the
two-dimensional (2D) toric code, suitable thresholds still exist by utilizing a mapping to the 2D random bond Ising
model.
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I. INTRODUCTION

The inherently analog nature of quantum superpositions
makes the error correction of quantum systems a formidable
challenge. In principle, good error-correcting codes exist
[1], and have been implemented experimentally [2]. The
theoretical extension to the regime of fault-tolerance [3], which
requires a threshold error rate below which error correction
is successful even in the presence of faulty operations, is
vital to extend existing few-qubit experiments to the realms
of functional quantum processors. However, the original route
towards fault-tolerance, via a concatenated hierarchy of error-
correcting codes, introduces such massive overheads that these
schemes are impractical for the foreseeable future.

Surface codes, such as the toric code in two dimensions
[4], shift the paradigm of fault-tolerance, disposing of the hi-
erarchical structure. The corresponding reduction in systemic
overheads makes them far more promising for experimental
implementation. The error-correction process only requires
classical processing of the results from measurements on small
blocks of neighboring qubits. The resultant error-correcting
and fault-tolerant thresholds are among the highest known
[5], operating in a regime well beyond that predicted by
the distance of the code: for a lattice of 2N2 qubits, a
logical error can be produced by 1

2N single qubit errors,
while, for large N , almost all distributions of N2/10 local
errors can be successfully corrected. When operating inside
the distance limit of a code, no explicit knowledge of the
error mechanism is required. Beyond this limit, two different
physical errors may correspond to the same error syndrome.
Correcting for the wrong one could lead to a logical error.
Evidently, intimate knowledge of the errors is required to
determine the most likely correction for a given syndrome.
However, this information may not be directly available from
the syndrome measurements. Previous rigorous derivations of
error-correcting and fault-tolerant thresholds have assumed
perfect knowledge of the noise model (in the sense that a
fault-tolerant threshold is derived under the assumption that,
for instance, the error rates of two error types are equal). It
is therefore important to assess the impact that this ignorance
might have on error correcting thresholds. A significant impact
is not expected as existing algorithms such as the minimum
weight perfect matching [6] function in the biased regime.

Nevertheless, our interest here is in proof rather than numerical
outcomes from (possibly nonoptimal) algorithms running on
finite-sized systems.

In this paper, we examine the toric code in two dimensions,
subject to a local noise model. For simplicity of exposition,
error correction is assumed to be implemented perfectly, while
we might have imperfect knowledge of the error model. We
elucidate the influence of making assumptions about the noise
model, and prove that the threshold error rates are altered, but
not significantly so. Of course, this setting is not physically
realistic; if we can implement the syndrome measurements
perfectly, it would seem reasonable that we can also determine
the noise mechanism. However, the primary purpose of this
paper is simply to convey that one should do this, and,
furthermore, should monitor the error model to account for any
drift during an experiment. Nevertheless, if that knowledge is
imperfect, an error-correcting threshold still exists. Moreover,
the results presented here can, in principle, be extended to a
discussion of fault-tolerance,1 at which point we cannot know
the error model perfectly.

The main technical tool that we use is the previously
established connection between syndrome measurements on a
noisy toric code and the random bond Ising model (RBIM) in
two dimensions [5] (or three dimensions if the measurements
are noisy). The phase transition of the RBIM locates the
critical threshold of the toric code. In [5], this connection was
established for a noise model parametrized only by p, the error
rate of a known model. We extend this to a noise model that
contains two error rates p̃X and p̃Z , and our assumptions about
what these values are pX and pZ . The critical region of the
RBIM can be determined by an ansatz [7–10] and improved
upon by a renormalization style expansion [11]. The values
resulting from this ansatz are numerically verified via explicit
simulation of a correction algorithm, minimum weight perfect
matching.

Other authors [12,13] have recently concerned themselves
with the idea that two different error types, X and Z, could
occur at different rates. The standard version of the toric

1The numerical computation of useful bounds becomes a more
formidable challenge, although the theory all readily extends.
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code in two dimensions does not tolerate these well, with a
threshold of the form max(pX,pZ) � pC , and so they have
studied how one might alter the lattice geometry to better
tolerate asymmetries between the parameters pX and pZ . The
model that we choose to study here is a minor transformation
of the standard two-dimensional (2D) toric code, making it
more akin to Wen’s model [14]. This has superior symmetry
properties, vastly increasing the range of parameters for which
error correction is possible. These thresholds come close to,
or even exceed the quantum Hamming bound, which limits
the performance of nondegenerate codes by measuring the
information content of typical error sequences. While it is
known that degenerate codes such as the toric code can surpass
this bound [15], few instances are known.

Before we begin in earnest, let us present an initial statement
that justifies our assertions on the existence of good error-
correcting thresholds. In the presence of X and Z errors, if
the two types of error occur independently with the same
probabilities p, it was shown in [5] that error correction is
possible if p < pC , some threshold. In that proof, the X and
Z errors are treated independently of one another. As such,
if the two error rates exhibit some bias, it is clear that error
correction is still possible if

max(pX,pZ) < pC.

So, this immediately shows that a threshold remains if pX �=
pZ . Moreover, any error correction algorithm that exhibits its
own threshold p < pA

C and operates independently on the two
error types must display a similar relationship, max(pX,pZ) <

pA
C . This includes, for instance, the minimum weight perfect

matching algorithm, for which pA
C is very close to pC , and

it achieves this without any knowledge of what the bias is.
Hence, perfect knowledge of the underlying noise model is
unnecessary. However, that threshold is quite weak: Fig. 1
compares the small error-correcting region (dashed lines) that
can be achieved in this way to the quantum Hamming bound
(solid black line), which gives a good estimate for how well
we might hope to be able to perform. The important issues
are how badly the error correcting thresholds are affected by a
lack of knowledge of the error model, and to what extent partial
knowledge of the error parameters can benefit the threshold.

Toric code

The toric code [4] is the quintessential example of a surface
code. We consider here, as in [16], a rotated version akin to the
Wen code [14]. This was also studied by the authors of [17].
To define it, start from an N × N square lattice with periodic
boundary conditions. Later, it will be convenient for us to term
this the primal lattice. The dual lattice is identical, but shifted
by half a lattice vector both horizontally and vertically. On
the primal lattice, place a qubit in the middle of each edge.
Each vertex v and face f has four neighboring qubits, two
on horizontal edges EH and two on vertical edges EV . The
measurement operators of the code are defined for each vertex
and face as

Kv =
∏

e∈EH

Ze

∏
e∈EV

Xe, Kf =
∏

e∈EH

Xe

∏
e∈EV

Ze.

FIG. 1. (Color online) Comparison of error-correction threshold
when the error model is known (p̃X = pX,p̃Z = pZ) and when
errors are assumed equally likely pX = pZ . Plotted for comparison
are numerical thresholds from minimum weight perfect matching
simulations, see Sec. III. The enlarged region demonstrates the
difference between the zero-order approximation of Eq. (4), and
the first-order correction of Eq. (5). The dashed region is the
error-correcting region for the toric code in its unrotated form.

All the terms, known as stabilizers, mutually commute and
have eigenvalues ±1. The space of the toric code states |�ij 〉
for i,j ∈ {0,1} are defined by the relations Kv|�ij 〉 = |�ij 〉
and Kf |�ij 〉 = |�ij 〉 for all v,f . There are 2N2 qubits and
2N2 − 2 independent stabilizers, leaving a four-fold degener-
acy (the indices i,j ) that represents two logical qubits. The
two logical Pauli ZL (XL) operators correspond to products of
Z (X) operations along a single column (row), looping around
the entire torus. There are two inequivalent columns (rows),
composed of either horizontal or vertical edges. Starting from
a logical state |�ij 〉, and applying continuous segments of X

and Z operators, it is possible to form closed loops (meaning
that all stabilizers return +1 expectation). Provided those loops
are topologically trivial (i.e., they do not form loops around the
torus), the state is the same as the original one while nontrivial
loops correspond to logical errors. This degeneracy of the code
means that if a large set of errors has arisen, it is not necessary
to establish exactly which errors occurred to correct for them;
one only has to form the closed loops which are most likely to
be trivial.

We consider an error model of X and Z errors acting
independently on each site, with probabilities p̃X and p̃Z ,
respectively: a single qubit state ρ undergoes

ρ �→ EZ(EX(ρ)); Eσ (ρ) = (1 − p̃σ )ρ + p̃σ σρσ.

We will give equivalent results for the extended model

E(ρ) = (1 − q̃X − q̃Z − q̃Y )ρ + q̃XXρX + q̃ZZρZ + q̃Y YρY
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in Sec. IV. The restricted error model of X and Z errors only
means that there are two independent sets of errors (anyons)
that can never interact; those detected by the {Kf } and {Kv},
respectively. By symmetry, it suffices to consider just one of
these sets, say {Kv}. To see this, let us denote by L the lattice on
which the toric code is defined (with the qubits in the middles
of the edges). Let L1 be a copy of L and L2 be the dual of
L1 (i.e., in the case of the periodic square lattice, the same
lattice but shifted both horizontally and vertically by half a
unit). With the edges q (corresponding to a qubit on L) of
each of the lattices Li we associate a variable τ i

q ∈ ±1 in the
following way:

Qubit type Error type Assignment

q ∈ V X τ 2
q = −1

q ∈ V Z τ 1
q = −1

q ∈ H X τ 1
q = −1

q ∈ H Z τ 2
q = −1.

Note that X and Z errors affect the two lattices equally.2

All other variables τ are set to 1. Note that this means that X

errors are specified by horizontal edges of L1 and L2, while Z

errors are specified by vertical edges.

II. RANDOM BOND ISING MODEL

In [5], a connection was proven between the ability to
correct errors arising on the toric code and the existence of
a phase transition in the random bond Ising model (RBIM).
This was done for both perfect (the 2D RBIM) and imper-
fect stabilizer measurement [three-dimensional (3D) RBIM],
assuming that X and Z errors each occur with probability p

independently on each lattice site, and assuming that p is
known. For simplicity, we will only consider the case of
perfect stabilizer measurement, our aim being to relax the
assumptions on the knowledge of the error rates, and their
equality. To emphasize the difference with the actual error
rates (p̃X and p̃Z), the assumed error rates are denoted by pX

and pZ , respectively. One should only be able to achieve the
optimal recovery specified by [5] if the nature of the noise is
known exactly.

Whether (or not) the error rates p̃X and p̃Z might be inferred
from the syndrome measurements, it is clearly feasible to
monitor the error rates to get a good estimate. We do not claim
that they should be completely unknown. Rather, our purpose
here is twofold: (i) find the error correcting threshold when the
rates pX = p̃X and pZ = p̃Z and (ii) convey that it is important
to be working as close to the conditions pX = p̃X and pZ = p̃Z

as possible but that, nevertheless, an error correcting threshold
still exists, i.e., that it is sufficient to have an estimate on the
error rates, rather than needing an exact characterization of the
full error model.

For one set of errors, say those affecting the {Kv}, once
the error syndrome has been extracted by measuring the

2In the usual (unrotated) toric code, all X errors give the values of
τ 1
q , and all Z errors give the values of τ 2

q .

stabilizers, the aim of error correction is to apply a set of
operations that reset all the stabilizers to +1. Relative to the
state that was initially encoded, there are only four inequivalent
consequences (1, XL

1 , ZL
2 , and XL

1 ZL
2 ) of the correction. Four

corresponding corrections, error strings Ei , i = 0, . . . ,3, can
be identified and need to be assigned a likelihood of having
arisen

pi =
∑
C∈S

p(Ei ∪ C)

according to the assumptions on the noise model, where the
set S corresponds to all trivial loops. If error correction is
possible, then the expectation of the probability of getting
the right answer over all actual error configurations should
tend to 1 in the limit of large system size N , while the other
probabilities should vanish. When error correction fails, all the
pi will be similar.

Let τ 0 be a set of variables ±1 for each qubit, corresponding
to whether or not a rotation is applied in the correction E0.
Similarly, τ 0

C is the set due to E0 ∪ C. The set of all closed loops
is conveniently described by introducing variables σi ∈ {±1}
for each vertex of the dual lattice [5,18]. A qubit q on an edge
of the primal lattice has two neighboring vertices of the dual
lattice v

q

1 and v
q

2 : τ 0
C,q = τ 0

q σv
q

1
σv

q

2
, where it now suffices to

sum over the variables σi without restriction. For probabilities

pq =
{
pZ q ∈ V,

pX q ∈ H,

we assign the probability of a given error string as

p
(
τ 0
C

) =
∏
q

(1 − pq)(1+τ 0
C,q )/2p

(1−τ 0
C,q )/2

q .

Removing a common factor, we have

∏
q

(
1 − pq

pq

)τ 0
C,q/2

.

By defining

1 − pX

pX

= e2JH
1 − pZ

pZ

= e2JV ,

the probability p0 is proportional to

Z0 =
∑

�σ
eH (�σ )

with

H (�σ ) =
∑
q∈H

(
τ 0
q JH

)
σv

q

1
σv

q

2
+

∑
q∈V

(
τ 0
q JV

)
σv

q

1
σv

q

2
. (1)

This is the Hamiltonian of the ±J random bond Ising model
on a square lattice, where the vector τ 0 arises from the actual
errors that occurred, and the coupling strengths constitute our
assignment of the likelihood of different configurations. The
transition in behavior of the probabilities between successful
correction (in asymptotically all instances of the syndromes)
and failure corresponds to a discontinuity of the free energy
F = ln Z of this model, where Z = ∑

i Zi . This is the well-
studied phase transition in the 2D RBIM. To determine the
phase transitions, we first establish the duality of the nonran-
dom version of the Ising model, and subsequently extend it via
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the replica method to account for the configurational average
in the random version.

A. Duality

Our analysis starts by considering the nonrandom bond
Ising model, aiming to reproduce the result that the model has
a self-dual point [18]. While true for all configurations τ 0,
we set τ 0

q = 1 ∀q for simplicity. Why is duality interesting? It
means that as a single parameter p is varied, there is a certain
symmetry present such that the model behaves the same also at
another point f (p). Assuming the model has exactly one phase
transition, the only place that this can occur is the self-dual
point p = f (p) [if it occurred at any other point p, it would
also occur at point f (p)]. We start by expressing

Z0 =
∑

�σ

∏
q

uq

(
σv

q

1
σv

q

2

)
.

This is just writing exactly what we had before but with

uq(τ ) =
{
eJH τ q ∈ H,

eJV τ q ∈ V.

Now, if we define
√

2u∗
q(s) =

{
eJH + (−1)se−JH q ∈ H,

eJV + (−1)se−JV q ∈ V,

for s ∈ {0,1}, then we can express
√

2uq(τ ) =
∑

sq∈{0,1}
u∗

q(sq)(−1)
sq (ε

v
q
1
+ε

v
q
2

)
,

having replaced σi with 2εi − 1 such that εi ∈ {0,1}. Now
consider what happens when we examine the product of uq ,
expressed as above, for all edges of L leading out of a given
vertex i, and performing the sum in Z0 over that particular εi ,
i.e.,

Z0 =
∑
�σ\σi

∏
r

vr
1,v

r
2 �=i

ur

∑
σi∈{±1}

∏
q:vq

1 =i

uq

has that ∑
σi

∏
q:vq

1 =i

uq

(
σiσv

q

2

)

= 1

4

∑
εi∈{0,1}

∏
q:vq

1 =i

∑
sq∈{0,1}

u∗
q(sq)(−1)

sq (εi+ε
v
q
2

)
,

and contained within this is∑
εi∈{0,1}

(−1)εi

∑
j sj ,

which gives a value 2 if∑
j

sj mod 2 = 0,

and 0 otherwise. The sum j is over the vertices such that we
include all q with vertices i and j . This is entirely equivalent
to the product of sj having to be +1 around vertices or, in other
words, around closed loops of the dual lattice. Hence,

Z0 =
∑

s

′ ∏
q

u∗
q,

where ′ denotes the restricted sum only for satisfying assign-
ments around closed loops of the dual lattice.3 This is exactly
the same as on the primal lattice, where we could have written

Z0 =
∑

τ

′ ∏
q

uq

with τq = σv
q

1
σv

q

2
, and ′ indicating a restricted sum only for

satisfying assignments around closed loops of the primal
lattice. Thus, the model is self-dual when

uq(τ ) = u∗
q[(1 − τ )/2] (2)

for all q and all τ ∈ {±1}, remembering that a horizontal edge
on the primal lattice corresponds to a vertical edge on the dual
lattice. It turns out that the only condition for the self-dual
point is

e−2JH = tanh(JV ),

satisfying all four equations (2) simultaneously.

B. Replica method

The above duality was proven without any randomness
present. To deal with the randomness of the bonds, we must
take a configurational average over the possible values of τ 0,
and use it to determine any discontinuity in the free energy
ln Z. The way that we approach calculating this is to consider
n parallel copies of the model (all with the same configuration
of ±1 bonds). The partition function of all n parallel copies is
just Zn, which is readily calculated for positive integers n. If
the limit n → 0 exists, then

ln Z =
〈

lim
n→0

Zn − 1

n

〉
.

For n copies, we can perform the same duality studies as we
did above for a single copy. However, the function uq(τ ) with
τ ∈ {±1} must be replaced with uq(τ ) with τ ∈ {±1}n, i.e.,
there is a value of ±1 for the bond q in each copy. The same
happens for u∗, and self-duality only arises if

uq(τ ) = u∗
q[(1 − τ )/2]

for all τ ∈ {±1}n simultaneously. This problem reduces
slightly because these expressions only depend on the number
of the number of +1’s in the vector τ , so we only need to test
equality for n + 1 cases rather than 2n. Let us take a vector �x
of n + 1 elements, and assign to element xp the value of uq(τ )
when τ contains p −1 values.

xH
k = p̃Xe(n−2k)JH + (1 − p̃X)e−(n−2k)JH ,

x∗H
k =

√
2n coshn(JH ) tanhk(−JH ){1 + [1 + (−1)k]p̃X}.

The V versions are equivalent, with p̃X �→ p̃Z and JH �→ JV .
Unfortunately, after averaging over the possible random bond
assignments τ 0

q , there are no values of JH and JV such that

3The factors of 2 conveniently cancel: for an n × m lattice, there

are 2nm edges, and hence a factor
√

2
−2nm

appears when replacing
the u with u∗ for each edge. The compensating factor is the factor of
2 that arises for each vertex (of which there are nm) from the sum
over εi .
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FIG. 2. Phase diagram of the 2D RBIM. The dashed line separates
the ferromagnetic (FM) and paramagnetic (PM) phases. Where the
Nishimori line intersects this is the multicritical point.

�x = �x∗. Had we been able to, then this is the limit we would
have taken as n → ∞ to find the phase transition. Instead, we
follow the approach of [7–10], in which it was conjectured that
the critical point is approximated by

xH
0 xV

0 = x∗H
0 x∗V

0 . (3)

Taking the limit n → 0 yields

p̃H log2 pH + (1 − p̃H ) log2(1 − pH )

+ p̃V log2 pV + (1 − p̃V ) log2(1 − pV ) = −1. (4)

The ansatz of Eq. (3) was postulated in [7–10] specifically
to work at the multicritical points of the RBIM (p̃X = pX

and p̃Z = pZ), and this was justified by the existence of
various symmetries. It has subsequently been numerically
tested extensively within this regime, and the asymmetric case
of pX �= pZ [10]. In this case, Eq. (4) coincides exactly with
the quantum Hamming bound. Moreover, the specific instance
of p̃X = p̃Z = pX = pZ transforms to the Nishimori line of
the RBIM, and reveals the critical probability quoted in [5] via
correspondence to the multicritical point of the RBIM.

Practically, we will only ever be able to estimate the
parameters pX and pZ , rather than determine them exactly.
Consider the worst possible case, in which we determine the
frequency p of stabilizers being −1, and assume that pX = pZ .
How detrimental is this to the threshold? Equation (4) reduces
to an effective homogeneous system with 2p̃ = p̃X + p̃Z and
(1 − 2p)2 = (1 − 2p̃X)(1 − 2p̃Z). This point lies on or above
the Nishimori line (p̃ > p, see Fig. 2). While Eq. (3) was
not originally proposed to function in this regime, detailed
studies [11] confirmed that in the homogeneous case, above
the Nishimori line, the approximation is a good one. Hence,
our analysis remains reliable. Alternatively, having reduced
to the homogeneous case, the critical probability cannot be
larger than that at the multicritical point pC ≈ 0.1092. Hence,
setting p = p̃ yields p̃X + p̃Z < 2pC , as compared to the
nontransformed version which only successfully corrects if
max(p̃X,p̃Z) < pC . The transformed version has more natural
symmetry properties and negates the requirement of recent
studies [12,13] to adjust the lattice geometry for each different
asymmetry between p̃X and p̃Z . Figure 1 shows that for all
parameter values, a finite per-qubit error rate threshold remains
and is superior to our original crude estimate (the dashed lines).
Provided a sufficiently accurate estimate of the parameters

of the error model is made, the error threshold is essentially
unaffected.

Although the conjecture of Eq. (3) compares favorably
with numerical estimates on the square lattice, there is known
to be a discrepancy with some exact renormalization group
calculations on hierarchical lattices [19]. To account for
this, a renormalization inspired expansion was introduced in
[11,20] to account for corrections. While most natural for
hierarchical lattices [20], it has been extended to square lattices
and achieves an even tighter match with previous numerical
results using only a first-order correction [11]. This technique
proceeds by replacing the term eJH in xH

0 (and, similarly, the
term eJH + e−JH in x∗H

0 ) with an equivalent effective weight
arising from an averaging effect over several neighboring
spins. The idea is that a differing order of correction can be
calculated by considering larger and larger neighborhoods.
In the large neighborhood limit, one must certainly recover
the true behavior of the model. The first-order approximation
considers only nearest neighboors, locating the critical point
at

2 = 1

2

∑
η=±1

[1 + η(1 − 2p)4] log2[1 + η(1 − 2p)4]

−
1∑

n=0

2∑
m=0

(
2

m

)
anm(p̃X,p̃Z) log2 anm(pX,pZ), (5)

where

anm(r,s) = rnsm

(1 − r)n−2(1 − s)m−2
+ (1 − r)n(1 − s)m

rn−2sm−2
.

This is a generalized version of Eq. (45) in [11], accounting for
an asymmetry between X and Z errors. The threshold values
are barely impacted, although Fig. 1 indicates that they can
surpass the zero-order approximation. This violation increases
at second order, suggesting that this is not a finite-sized
computational effect, and that this code does indeed have an
error correcting threshold (in certain regimes) which exceeds
the quantum Hamming bound. This is by no means forbidden
(the quantum Hamming bound only applies to nondegenerate
error-correcting codes, while the toric code is degenerate), but
few examples are known [15].

III. MINIMUM WEIGHT PERFECT MATCHING

Given the near-vertical phase boundary of the RBIM below
the Nishimori line (Fig. 2), any error correction strategy
which assumes a lower “temperature” has an almost identical
critical probability. In particular, the zero temperature case
corresponds to correcting by minimum weight perfect match-
ing;4 an efficient algorithm which is readily implemented. As
such, it provides a lower bound on the threshold fidelities
for verification of the previous results. For this purpose, the
(im)practicalities of its application [21] are irrelevant.

4In this context, temperature is a mathematical parameter of the
mapping to the RBIM and has no physical analog. Zero temperature
corresponds to the limit J → ∞, meaning the only term in Z0 that is
worth considering is the �σ that gives the smallest value.
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The input to a minimum weight perfect matching algorithm
is a set of vertices. In the present case, these vertices correspond
to the stabilizers which give −1 values (i.e., the locations of
anyons). We must then assign a weight for every pairing of
two anyons. We will justify a weighting function momentarily.
The algorithm then outputs the way in which the anyons can
be paired up (i.e., how they might annihilate each other) such
that the total weight is minimized. The idea is to make this
correction correspond to the most probable set of operations
that could have created that distribution of anyons. If a given
anyon pair are separated by lH and lV in the horizontal and
vertical directions, then, as a minimum, they must have been
created by lH X errors and lV Z errors. Hence, we assign a
minimum probability of

(
pX

1 − pX

)lH
(

pZ

1 − pZ

)lV

to that combination. So, if we take a particular way of pairing
up all the anyons, the probability that such a combination arose
was the product of all the individual pair-wise probabilities.
We want to find the combination that minimizes that product,
but that is the same as finding the combination that minimizes
the sum of corresponding logarithms

lH ln

(
pX

1 − pX

)
+ lV ln

(
pZ

1 − pZ

)
.

Hence these constitute the weights that we must minimize the
total of.

Our simulation, with the results depicted in Fig. 1, func-
tions by considering an N × N lattice where N = 100. We
implemented an error model that created X and Z errors on
each qubit with probabilities p̃X and p̃Z , respectively. Having
ascertained the positions of each error (i.e., which stabilizers
anticommute with the errors), we assigned weights between a
pair of vertices separated by lH and lV in the horizontal and
vertical directions as

lH ln

(
pX

1 − pX

)
+ lV ln

(
pZ

1 − pZ

)
.

The BLOSSOM V algorithm [22] was then used to perform the
minimum weight perfect matching. For a fixed ratio p̃X/p̃Z ,
the fraction of 500 different realizations of an error distribution
giving a logical error was computed for varying error rates,
enabling the determination of the failure probability (the
threshold at which a transition in logical error rate from 0
to 50% occurs). Similar numerics, for a perfectly identified
error model, are present in [12].

IV. GENERALIZED MODEL

The previous analysis can be repeated for a more general
error model of

E(ρ) = (1 − q̃X − q̃Y − q̃Z)ρ + q̃XXρX

+ q̃Y YρY + q̃ZZρZ.

Note that we use q to distinguish from the previous p. The
previous distribution had

qX = pX(1 − pZ), qZ = pZ(1 − pX), qY = pXpZ.

With Y errors present, it is not possible to divide the original
system into two independent systems, as we did before.
Nevertheless, we can still express the probability of successful
error correction as being related to the phase transition of the
model

Z0 =
∑

σ

eH

with

H =
∑
q∈H

τ 1
q JH σiσj + τ 2

q JV σi ′σj ′ + τ 1
q τ 2

q JY σiσjσi ′σj ′ ,

where

e4JH = (1 − qX − qY − qZ)qZ

qY qX

,

e4JV = (1 − qX − qY − qZ)qX

qY qZ

,

e4JY = (1 − qX − qY − qZ)qY

qXqZ

.

The τ i
q have a sign distribution specified by the error model.

This is exactly the model derived in [23]. The duality and
replica arguments follow in much the same way. For instance,
the duality transformation of a single copy is described by

u = (eJH +JV +JY ,eJH −JV −JY ,e−JH +JV −JY ,e−JH −JV +JY ),

u∗ = 1
2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠ u,

and equality (i.e., self-duality) can be generated if, for example,
JH = JV and

e−2JY = sinh(2JH ).

Finally, we get the equivalent of Eq. (4), i.e., the zero-order
approximation, for this generalized model

(1 − q̃X − q̃Y − q̃Z) log2(1 − q̃X − q̃Y − q̃Z)

+
∑

σ∈{X,Y,Z}
q̃σ log2 q̃σ = −1.

One application is assessing how well minimum weight
perfect matching might perform on depolarizing noise, as
compared to the optimal. If qX = qY = qZ = q̃X = q̃Y = q̃Z ,
i.e., depolarizing noise that we have perfectly identified, one
has to solve the equation

(1 − 3q) log2(1 − 3q) + 3q log2(q) = −1

to find the critical 3q = 0.18929, which replicates the value
given in [23]. This is the best that error correction could
achieve. What about minimum weight perfect matching?
Since it is not capable of taking the correlations introduced
by Y into account, it is not expected to be tight with the
optimal correction. So, it effectively proceeds by making the
assumption that qY = p2, qX = qZ = p(1 − p), q̃X = q̃Y =
q̃Z = q̃. Moreover, we know that the performance of the
algorithm is very similar to that of the critical point of the
model parametrized in this way. So, it suffices to solve for
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the critical point again, which is described by

− 1
2 = (1 − 2q) log2(1 − p) + 2q log2(p),

and the largest value of q is given by setting p = 2q,
which reveals that 3q = 0.165. This compares favorably with
previous numerical estimates [24].

V. CONCLUSION

This paper has investigated how any discrepancy between
the actual and assumed noise models can influence the error-
correcting threshold of a code if operating in a regime beyond
that specified by the code’s distance. The principle is universal,
although it has been demonstrated for a specific class of local

noise acting on the toric code in two dimensions. It is important
to note that the rotated version of the toric code examined here
exhibits a significant enhancement in robustness with respect
to asymmetries between X and Z error rates, and can even
surpass the quantum Hamming bound in some regimes. The
concern that the threshold value might be adversely affected,
as raised in [16], is unfounded; good approximations to the
error parameters of a system lead to a negligible change in the
threshold error rates.

We have also detailed how correlations due to Y errors
can be incorporated into the analysis [23]. In principle, the
present results can be generalized to the situation of noisy
measurements [5,9], adding a third dimension to model to the
RBIM, to derive fault-tolerant thresholds. It is anticipated that
the conclusions of this paper should follow similarly.
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