23 research outputs found

    Prenatal diagnosis of a trisomy 7/trisomy 13 mosaicism

    Get PDF
    Double aneuploidy mosaicism of two different aneuploidy cell lines is rare. We describe for the first time a double trisomy mosaicism, involving chromosomes 7 and 13 in a fetus presenting with multiple congenital anomalies. No evidence for chimerism was found by DNA genotyping. The origin of both trisomies are consistent with isodisomy of maternal origin. Therefore, it is most likely that the double trisomy mosaicism arose from two independent events very early in embryonic development. The trisomy 7 and 13 cells were shown to be of maternal origin

    Trisomy 13 or 18 (mosaicism) in first trimester cytotrophoblast cells: false-positive results in 11 out of 51 cases

    No full text
    Objective: The finding of full or mosaic trisomy 13 or IS in first trimester chorionic villus sampling (CVS) may be a false-positive result. This report provides incidence and outcome information that may be helpful in counselling individual patients and in choosing adequate follow-up. Study design: From a series of 6820 CVS cases, we retrospectively collected data on all patients (n = 51) with full (n = 30) or mosaic (n = 5) trisomy 18, and full (n = 13) or mosaic (n = 3) trisomy 13 in cytotrophoblast cells. Results: Five false-positives were seen in patients with full trisomy 18 and three in the mosaic cases. One false-positive result was observed in full trisomy 13 and two false-positives in cases of mosaicism. No false-negative results were reported. Conclusion: The diagnosis of trisomy 13 or 18 in cytotrophoblasts should be confirmed in other tissues, unless fetal abnormalities are seen at ultrasound. In case of mosaicism, follow-up amniocentesis is advised. 2002 Elsevier Science Ireland Ltd. All rights reserve

    Achondroplasia with multiple-suture craniosynostosis: a report of a new case of this rare association

    No full text
    We report on a female patient with an exceedingly rare combination of achondroplasia and multiple-suture craniosynostosis. Besides the specific features of achondroplasia, synostosis of the metopic, coronal, lambdoid, and squamosal sutures was found. Series of neurosurgical interventions were carried out, principally for acrocephaly and posterior plagiocephaly. The most common achondroplasia mutation, a p.Gly380Arg in the fibroblast growth factor receptor 3 (FGFR3) gene, was detected. Cytogenetic and array CGH analyses, as well as molecular genetic testing of FGFR1, 2, 3 and TWIST1 genes failed to identify any additional genetic alteration. It is suggested that this unusual phenotype is a result of variable expressivity of the common achondroplasia mutatio

    De novo mutations of the gene encoding the histone acetyltransferase KAT6B in two patients with Say-Barber/Biesecker/Young-Simpson syndrome

    No full text
    The Say-Barber/Biesecker/Young-Simpson (SBBYS) type of the blepharophimosis-mental retardation syndrome group (Ohdo-like syndromes) is a multiple congenital malformation syndrome characterized by vertical narrowing and shortening of the palpebral fissures, ptosis, intellectual disability, hypothyroidism, hearing impairment, and dental anomalies. Mutations of the gene encoding the histone-acetyltransferase KAT6B have been recently identified in individuals affected by SBBYS syndrome. SBBYS syndrome-causing KAT6B mutations cluster in a ~1,700 basepair region in the 3' part of the large exon 18, while mutations located in the 5' region of the same exon have recently been identified to cause the genitopatellar syndrome (GPS), a clinically distinct although partially overlapping malformation-intellectual disability syndrome. Here, we present two children with clinical features of SBBYS syndrome and de novo truncating KAT6B mutations, including a boy who was diagnosed at the age of 4 months. Our results confirm the implication of KAT6B mutations in typical SBBYS syndrome and emphasize the importance of genotype-phenotype correlations at the KAT6B locus where mutations truncating the KAT6B protein at the amino-acid positions ~1,350-1,920 cause SBBYS syndrom

    Prenatal sonographic features can accurately determine parental origin in triploid pregnancies

    No full text
    Objective: To describe the prenatal sonographic features and maternal biochemical markers in triploid pregnancies and to assess whether prenatal phenotype can determine genetic origin. Methods: We performed a retrospective multicenter cohort study that included all triploid pregnancies diagnosed between 2000 and 2018 in two Fetal Medicine Units in Amsterdam. Fetal growth, presence of structural anomalies, extra-fetal anomalies, and maternal biochemical markers were retrieved. Asymmetrical intrauterine growth restriction was diagnosed when the head-to-abdominal circumference (HC/AC) ratio was >95th centile. Parental origin was analyzed via molecular genotyping in 46 cases (38.3%). Results: One hundred and twenty triploid pregnancies were identified, of which 86 cases (71.6%) were detected before 18 weeks of gestation. Triploidy of maternal origin was found in 32 cases (69.6%) and was associated with asymmetrical growth restriction, a thin placenta, and low pregnancy-associated plasma protein A and free beta-human chorionic gonadotrophin (β-hCG) levels. Triploidy of paternal origin was found in 14 cases (30.4%) and was associated with an increased nuchal translucency, placental molar changes, and a high free β-hCG. Prospective prediction of the parental origin of the triploidy was made in 30 of the 46 cases based on phenotypical ultrasound presentation, and it was correct in all cases. Conclusion: Asymmetrical growth restriction with severe HC/AC discrepancy is pathognomonic of maternal triploidy. Placental molar changes indicate a paternal triploidy. Moreover, triploidy can present with an abnormal first trimester combined test, with serum levels on the extreme end. When available results of maternal serum markers can support the diagnosis of parental origin of the triploidy, an accurate assessment of the parental origin based on prenatal sonographic features is possible, making DNA analysis redundant

    Intellectual disability and hemizygous GPD2 mutation

    No full text
    We report on a 25-year-old female with intellectual disability, mildly unusual face, and a pervasive developmental disorder, in whom routine aCGH showed a 298 kb de novo deletion at chromosome 2q24.1(156869529-157167986 × 1). The region contained two genes (NR4A2; GPD2). Molecular studies in the proposita showed an additional variant in GPD2 (c.614C > T, p.Pro205Leu), which was predicted to be pathogenic. The variant was also present in the healthy mother and sister. Functional analysis showed absent GPD2 activity in the proposita and 50% activity in mother and sister. We conclude that we have been able to find circumstantial evidence for the causative effect of the hemizygous GPD2 mutation but full proof remained lacking. Total costs for the work-up in these patients were high (€21,975 [$27,029]). Similar results will increasingly be found when Next Generation Techniques will be applied widely in patients with intellectual disability, and proving pathogenicity by functional studies or in animal models will be expensive. We advocate the use of freely accessible international databases combining phenotype and genotype data using standard nomenclatures to facilitate proving pathogenicity of research data and to decrease costs of health car

    Prenatal sonographic features can accurately determine parental origin in triploid pregnancies

    No full text
    Objective: To describe the prenatal sonographic features and maternal biochemical markers in triploid pregnancies and to assess whether prenatal phenotype can determine genetic origin. Methods: We performed a retrospective multicenter cohort study that included all triploid pregnancies diagnosed between 2000 and 2018 in two Fetal Medicine Units in Amsterdam. Fetal growth, presence of structural anomalies, extra-fetal anomalies, and maternal biochemical markers were retrieved. Asymmetrical intrauterine growth restriction was diagnosed when the head-to-abdominal circumference (HC/AC) ratio was >95th centile. Parental origin was analyzed via molecular genotyping in 46 cases (38.3%). Results: One hundred and twenty triploid pregnancies were identified, of which 86 cases (71.6%) were detected before 18 weeks of gestation. Triploidy of maternal origin was found in 32 cases (69.6%) and was associated with asymmetrical growth restriction, a thin placenta, and low pregnancy-associated plasma protein A and free beta-human chorionic gonadotrophin (β-hCG) levels. Triploidy of paternal origin was found in 14 cases (30.4%) and was associated with an increased nuchal translucency, placental molar changes, and a high free β-hCG. Prospective prediction of the parental origin of the triploidy was made in 30 of the 46 cases based on phenotypical ultrasound presentation, and it was correct in all cases. Conclusion: Asymmetrical growth restriction with severe HC/AC discrepancy is pathognomonic of maternal triploidy. Placental molar changes indicate a paternal triploidy. Moreover, triploidy can present with an abnormal first trimester combined test, with serum levels on the extreme end. When available results of maternal serum markers can support the diagnosis of parental origin of the triploidy, an accurate assessment of the parental origin based on prenatal sonographic features is possible, making DNA analysis redundant
    corecore