8 research outputs found

    Genetic diversity of Trypanosoma cruzi infecting raccoons (Procyon lotor) in 2 metropolitan areas of southern Louisiana: implications for parasite transmission networks

    Get PDF
    Trypanosoma cruzi, the aetiological agent of Chagas disease, exists as an anthropozoonosis in Louisiana. Raccoons are an important reservoir, as they demonstrate high prevalence and maintain high parasitaemia longer than other mammals. Given the complex nature of parasite transmission networks and importance of raccoons as reservoirs that move between sylvatic and domestic environments, detailing the genetic diversity of T. cruzi in raccoons is crucial to assess risk to human health. Using a next-generation sequencing approach targeting the mini-exon, parasite diversity was assessed in 2 metropolitan areas of Louisiana. Sequences were analysed along with those previously identified in other mammals and vectors to determine if any association exists between ecoregion and parasite diversity. Parasites were identified from discrete typing units (DTUs) TcI, TcII, TcIV, TcV and TcVI. DTUs TcII, TcV and TcVI are previously unreported in raccoons in the United States (US). TcI was the most abundant DTU, comprising nearly 80% of all sequences. All but 1 raccoon harboured multiple haplotypes, some demonstrating mixed infections of different DTUs. Furthermore, there is significant association between DTU distribution and level III ecoregion in Louisiana. Finally, while certain sequences were distributed across multiple tissues, others appeared to have tissue-specific tropism. Taken together, these findings indicate that ongoing surveillance of T. cruzi in the US should be undertaken across ecoregions to fully assess risk to human health. Given potential connections between parasite diversity and clinical outcomes, deep sequencing technologies are crucial and interventions targeting raccoons may prove useful in mitigating human health risk

    INVESTIGATING DIFFERENTIAL ATTRACTIVENESS OF HUMAN SKIN MICROBIOTA TO ANOPHELES GAMBIAE AS A POTENTIAL COMPONENT OF BAITED SUGAR TRAPS CONTAINING ANTI-PLASMODIUM BACTERIA FOR BIOLOGICAL CONTROL

    Get PDF
    Malaria is a pressing global health problem that is difficult to eradicate or even control because of its complex biology. Currently employed control mechanisms are inefficient, and as a result of the need for alternative interventions, some research has focused on investigating the influence of the microbiota on mosquito vector competence. While some bacteria of the mosquito midgut have been shown to confer refractoriness to the Plasmodium parasite as well as shorten the mosquito lifespan, we are still far from a real world application of a bacterium as a biological control mechanism for malaria. Spiked sugar feeding stations have been proposed as a mechanism of introducing the bacteria into local vector populations. This project aimed to investigate means of attracting mosquitoes to feed on the malaria parasite-blocking Enterobacter (Esp_Z) bacteria- spiked sugar, using human skin microbiota isolates as potential attractants. We also investigated the impact of bacterial exposure on mosquito life span and fecundity as general fitness parameters. Minimal fitness costs were observed by sugar-feeding Plasmodium-killing bacteria in the lab environment. No foot microbiome isolate was found to attract mosquitoes on its own, although one was found to exert mosquito repelling activity. However when this bacterial isolate was combined with an attractant that zoophilic mosquitoes respond to, an increase in attraction was observed. While much work is still needed, our results provide useful knowledge for the development of this type of biological control

    Identification of highly conserved Trypanosoma cruzi antigens for the development of a universal serological diagnostic assay

    No full text
    ABSTRACTChagas Disease is an important neglected tropical disease caused by Trypanosoma cruzi. There is no gold standard for diagnosis and commercial serological tests perform poorly in certain locations. By aligning T. cruzi genomes covering parasite genetic and geographic diversity, we identified highly conserved proteins that could serve as universal antigens for improved diagnosis. Their antigenicity was tested in high-density peptide microarrays using well-characterized plasma samples, including samples presenting true infections but discordant serology. Individual and combination of epitopes were also evaluated in peptide-ELISAs. We identified >1400 highly conserved T. cruzi proteins evaluated in microarrays. Remarkably, T. cruzi positive controls had a different epitope recognition profile compared to serologically discordant samples. In particular, multiple T. cruzi antigens used in current tests and their strain-variants, and novel epitopes thought to be broadly antigenic failed to be recognized by discordant samples. Nonetheless, >2000 epitopes specifically recognized by IgGs from both positive controls and discordant samples were identified. Evaluation of selected peptides in ELISA further illustrated the extensive variation in antibody profiles among subjects and a peptide combination could outperform a commercial ELISA, increasing assay sensitivity from 52.3% to 72.7%. Individual variation in antibody profiles rather than T. cruzi diversity appears to be the main factor driving differences in serological diagnostic performance according to geography, which will be important to further elucidate. ELISA with a combination of peptides recognized by a greater number of individuals could better capture infections, and further development may lead to an optimal antigen mixture for a universal diagnostic assay

    Assessing Trypanosoma cruzi Parasite Diversity through Comparative Genomics: Implications for Disease Epidemiology and Diagnostics

    No full text
    Chagas disease is an important vector-borne neglected tropical disease that causes great health and economic losses. The etiological agent, Trypanosoma cruzi, is a protozoan parasite endemic to the Americas, comprised by important diversity, which has been suggested to contribute to poor serological diagnostic performance. Current nomenclature describes seven discrete typing units (DTUs), or lineages. We performed the first large scale analysis of T. cruzi diversity among 52 previously published genomes from strains covering multiple countries and parasite DTUs and assessed how different markers summarize this genetic diversity. We also examined how seven antigens currently used in commercial serologic tests are conserved across this diversity of strains. DTU structuration was confirmed at the whole-genome level, with evidence of sub-DTU diversity, associated in part to geographic structuring. We observed very comparable phylogenetic tree topographies for most of the 32 markers investigated, with clear clustering of sequences by DTU, and a few of these markers suggested some degree of intra-lineage diversity. At least three of the currently used antigens represent poorly conserved sequences, with sequences used in tests quite divergent from sequences in many strains. Most markers are well suited for estimating parasite diversity to DTU level, and a few are particularly well-suited to assess intra-DTU diversity. Analysis of antigen sequences across all strains indicates that antigenic diversity is a likely explanation for limited diagnostic performance in Central and North America

    Genetic diversity of Trypanosoma cruzi parasites infecting dogs in southern Louisiana sheds light on parasite transmission cycles and serological diagnostic performance.

    No full text
    BackgroundChagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. We genotyped parasites in a large cohort of PCR positive dogs to shed light on parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance.Methodology/principal findingsWe used a metabarcoding approach based on deep sequencing of T. cruzi mini-exon marker to assess parasite diversity. Phylogenetic analysis of 178 sequences from 40 dogs confirmed the presence of T. cruzi discrete typing unit (DTU) TcI and TcIV, as well as TcII, TcV and TcVI for the first time in US dogs. Infections with multiple DTUs occurred in 38% of the dogs. These data indicate a greater genetic diversity of T. cruzi than previously detected in the US. Comparison of T. cruzi sequence diversity indicated that highly similar T. cruzi strains from these DTUs circulate in hosts and vectors in Louisiana, indicating that they are involved in a shared T. cruzi parasite transmission cycle. However, TcIV and TcV were sampled more frequently in vectors, while TcII and TcVI were sampled more frequently in dogs.Conclusions/significanceThese observations point to ecological host-fitting being a dominant mechanism involved in the diversification of T. cruzi-host associations. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored TcI parasites with different mini-exon sequences, which strongly supports the hypothesis that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of conserved parasite antigens should be a high priority for the improvement of current serological tests

    Locally Transmitted in a Domestic Llama () in a Rural Area of Greater New Orleans, Louisiana, USA

    No full text
    -associated megaesophagus was diagnosed in a domestic Louisiana-born llama with no significant travel history. The llama resided in the same rural area of greater New Orleans, Louisiana, where the first human autochthonous case of Chagas disease was identified in the state. Venous blood from the llama tested positive for kinetoplastid DNA by conventional PCR. The cardiac evaluation was unremarkable, while thoracic radiographs revealed generalized megaesophagus. The llama received supportive care, but was ultimately humanely euthanized. The esophagus was severely distended throughout its length on necropsy, and histologic evaluation showed no microscopic changes in esophageal tissue and minimal to mild lymphoplasmacytic inflammation in cardiac tissue. DNA was detected by conventional PCR in the esophagus, small intestine, and blood despite no protozoan organisms being observed in multiple tissue sections examined. This report contributes to the growing body of evidence of local transmission of in the southern United States, and Chagas disease should be considered a differential diagnosis when evaluating llamas and other large animal species for esophageal dysfunction. There is little research describing megaesophagus or Chagas disease in llamas, and this report aims to increase awareness about this zoonotic disease that is becoming more frequently reported in the southern United States
    corecore