3,136 research outputs found

    Oblique response of a split-ring-resonator-based left-handed metamaterial slab

    Get PDF
    Cataloged from PDF version of article.We experimentally studied the transmission response of a one-dimensional rectangle-prism-shaped metamaterial slab for oblique incidence angles. The electrical size of the split-ring resonators was 1 order of magnitude smaller than the operation wavelength similar to 8.5 cm. We demonstrated that the left-handed transmission peak preserved up to an angle of incidence 45 degrees. The angular measurements were performed with respect to two lateral directions. The confirmed insensitivity of split-ring-resonator-based metamaterials to the angle of incidence makes them a good candidate for superlens applications. (C) 2009 Optical Society of Americ

    Electrically small split ring resonator antennas

    Get PDF
    Cataloged from PDF version of article.We studied electrically small resonant antennas composed of split ring resonators (SRR) and monopoles. The antennas considered have the same ring radius, but slightly different geometry. The resonance frequency depends on the geometry of the SRRs. Two SRR antennas are designed. The first one, which operates at 3.62 GHz, is demonstrated theoretically and experimentally. The size of this antenna is 0.095 lambda(0)x0.100 lambda(0) and is low profile at the other dimension. The gain and directivity of the antenna was 2.38 and 5.46, respectively. The corresponding efficiency was 43.6%. The estimated radiation Q (rad Q=23.03) was much larger than the minimum radiation Q (min Q=1.78). The second one is a rather small SRR antenna in which the capacitance between the rings is increased. The size is reduced to 0.074 lambda(0)x0.079 lambda(0). This structure is called serrated SRR (SSRR). Both antennas have similar far-field patterns but the efficiency of the SSRR antenna is less. (c) 2007 American Institute of Physics

    Stiffness modeling of robotic manipulator with gravity compensator

    Get PDF
    The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family

    Photonic magnetic metamaterial basics

    Get PDF
    Cataloged from PDF version of article.In the present study, we provide a detailed analysis for the study of photonic metamaterials. We demonstrate the polarization and orientation dependent transmission response of split ring resonators at the infrared and visible band. We provided optical measurements only for one case, in which electric component of the incident field was coupled to planar split ring resonator array. We consecutively studied (i) frequency tuning, (ii) effect of resonator density, (iii) shifting magnetic resonance frequency by changing the resonator shape, and (iv) effect of metal loss and plasma frequency. The study provides an overlook for the candidate applications such as the enhancement of power passing through an electrically small hole, negative index metamaterials and optical metamaterial absorbers. (C) 2010 Elsevier B.V. All rights reserved

    Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration

    Get PDF
    Cataloged from PDF version of article.We designed, fabricated, and experimentally characterized thin absorbers utilizing both electrical and magnetic impedance matching at the near-infrared regime. The absorbers consist of four main layers: a metal back plate, dielectric spacer, and two artificial layers. One of the artificial layers provides electrical resonance and the other one provides magnetic resonance yielding a polarization independent broadband perfect absorption. The structure response remains similar for the wide angle of incidence due to the sub-wavelength unit cell size of the constituting artificial layers. The design is useful for applications such as thermal photovoltaics, sensors, and camouflage. (C)2011 Optical Society of Americ

    Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture

    Get PDF
    Cataloged from PDF version of article.In the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with lambda/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency. (C) 2009 Optical Society of Americ

    Miniaturized negative permeability materials

    Get PDF
    Cataloged from PDF version of article.Experimental and numerical studies of mu-negative (MNG) materials such as multisplit ring resonators (MSRRs) and spiral resonators (SRs) are presented. The resonance frequency of the structures is determined by the transmission measurements and minimum electrical size of lambda(0)/17 for the MSRRs and of lambda(0)/82 for the SRs observed. These MNG materials can be easily produced by the well developed printed circuit board and optical lithography techniques. They are promising elements for the development of high resolution metamaterial lenses and electrically small antennas. (c) 2007 American Institute of Physics

    Design of Miniaturized Narrowband Absorbers Based on Resonant-Magnetic Inclusions

    Get PDF
    Cataloged from PDF version of article.In this paper, we present the design of miniaturized narrowband-microwave absorbers based on different kinds of magnetic inclusions. The operation of the proposed components originates from the resonance of a planar array of inclusions excited by an incoming wave with a given polarization. As in common absorber layouts, a 377 Omega resistive sheet is also used to absorb the electromagnetic energy of the impinging field. Since the planar array of magnetic inclusions behaves at its resonance as a perfect magnetic conductor, the resistive sheet is placed in close proximity of the resonating inclusions, without perturbing their resonance condition. In contrast to other typical absorber configurations presented in the literature, the absorber proposed in this paper is not backed by a metallic plate. This feature may be useful for stealth applications, as discussed thoroughly in the paper. The other interesting characteristic of the proposed absorbers is the subwavelength thickness, which has shown to depend only on the geometry of the basic resonant inclusions employed. At first, regular split-ring resonators (SSRs) disposed in an array configuration are considered and some application examples are presented. Absorbers based on SRRs are shown to reach thickness of the order of lambda(0)/20. In order to further squeeze the electrical thickness of the absorbers, multiple SRRs and spiral resonators are also used. The employment of such inclusions leads to the design of extremely thin microwave absorbers, whose thickness may even be close to lambda(0)/100. Finally, some examples of miniaturized absorbers suitable for a practical realization are proposed

    Iridium(i) complexes bearing hemilabile coumarin-functionalised N-heterocyclic carbene ligands with application as alkyne hydrosilylation catalysts

    Get PDF
    A set of iridium(i) complexes of formula IrCl(¿C, ¿2-IRCouR')(cod) or IrCl(¿C, ¿2-BzIRCouR')(cod) (cod = 1, 5-cyclooctadiene; Cou = coumarin; I = imidazolin-2-carbene; BzI = benzimidazolin-2-carbene) have beeen prepared from the corresponding azolium salt and [Ir(µ-OMe)(cod)]2 in THF at room temperature. The crystalline structures of 4b and 5b show a distorted trigonal bipyramidal configuration in the solid state with a coordinated coumarin moiety. In contrast, an equilibrium between this pentacoordinated structure and the related square planar isomer is observed in solution as a consequence of the hemilability of the pyrone ring. Characterization of both species by NMR was achieved at the low and high temperature limits, respectively. In addition, the thermodynamic parameters of the equilibrium, ¿HR and ¿SR, were obtained by VT 1H NMR spectroscopy and fall in the range 22-33 kJ mol-1 and 72-113 J mol-1 K-1, respectively. Carbonylation of IrCl(¿C, ¿2-BzITolCou7, 8-Me2)(cod) resulted in the formation of a bis-CO derivative showing no hemilabile behaviour. The newly synthesised complexes efficiently catalyze the hydrosilylation of alkynes at room temperature with a preference for the ß-(Z) vinylsilane isomer. © The Royal Society of Chemistry
    corecore