16 research outputs found

    2009 Pandemic Influenza A (H1N1) Virus Outbreak and Response – Rwanda, October, 2009–May, 2010

    Get PDF
    BACKGROUND: In October 2009, the first case of pandemic influenza A(H1N1)pdm09 (pH1N1) was confirmed in Kigali, Rwanda and countrywide dissemination occurred within several weeks. We describe clinical and epidemiological characteristics of this epidemic. METHODS: From October 2009 through May 2010, we undertook epidemiologic investigations and response to pH1N1. Respiratory specimens were collected from all patients meeting the WHO case definition for pH1N1, which were tested using CDC's real time RT-PCR protocol at the Rwandan National Reference Laboratory (NRL). Following documented viral transmission in the community, testing focused on clinically severe and high-risk group suspect cases. RESULTS: From October 9, 2009 through May 31, 2010, NRL tested 2,045 specimens. In total, 26% (n = 532) of specimens tested influenza positive; of these 96% (n = 510) were influenza A and 4% (n = 22) were influenza B. Of cases testing influenza A positive, 96.8% (n = 494), 3% (n = 15), and 0.2% (n = 1) were A(H1N1)pdm09, Seasonal A(H3) and Seasonal A(non-subtyped), respectively. Among laboratory-confirmed cases, 263 (53.2%) were children <15 years and 275 (52%) were female. In total, 58 (12%) cases were hospitalized with mean duration of hospitalization of 5 days (Range: 2-15 days). All cases recovered and there were no deaths. Overall, 339 (68%) confirmed cases received oseltamivir in any setting. Among all positive cases, 26.9% (143/532) were among groups known to be at high risk of influenza-associated complications, including age <5 years 23% (122/532), asthma 0.8% (4/532), cardiac disease 1.5% (8/532), pregnancy 0.6% (3/532), diabetes mellitus 0.4% (2/532), and chronic malnutrition 0.8% (4/532). CONCLUSIONS: Rwanda experienced a PH1N1 outbreak which was epidemiologically similar to PH1N1 outbreaks in the region. Unlike seasonal influenza, children <15 years were the most affected by pH1N1. Lessons learned from the outbreak response included the need to strengthen integrated disease surveillance, develop laboratory contingency plans, and evaluate the influenza sentinel surveillance system

    Genomic sequencing of SARS-CoV-2 in Rwanda reveals the importance of incoming travelers on lineage diversity

    Get PDF
    COVID-19 transmission rates are often linked to locally circulating strains of SARS-CoV-2. Here we describe 203 SARS-CoV-2 whole genome sequences analyzed from strains circulating in Rwanda from May 2020 to February 2021. In particular, we report a shift in variant distribution towards the emerging sub-lineage A.23.1 that is currently dominating. Furthermore, we report the detection of the first Rwandan cases of the B.1.1.7 and B.1.351 variants of concern among incoming travelers tested at Kigali International Airport. To assess the importance of viral introductions from neighboring countries and local transmission, we exploit available individual travel history metadata to inform spatio-temporal phylogeographic inference, enabling us to take into account infections from unsampled locations. We uncover an important role of neighboring countries in seeding introductions into Rwanda, including those from which no genomic sequences were available. Our results highlight the importance of systematic genomic surveillance and regional collaborations for a durable response towards combating COVID-19.info:eu-repo/semantics/publishe

    Influenza surveillance in 15 countries in Africa, 2006-2010

    Get PDF
    BACKGROUND: In response to the potential threat of an influenza pandemic, several international institutions and governments, in partnership with African countries, invested in the development of epidemiologic and laboratory influenza surveillance capacity in Africa. METHODS: We used a standardized form to collect information on influenza surveillance system characteristics, the number and percent of influenza-positive patients with influenza-like illness (ILI) or severe acute respiratory infections (SARI) and virologic data. RESULTS: Between 2006 and 2010, the number of ILI and SARI sites in 15 African countries increased from 21 to 127 and from 2 to 98, respectively. Influenza was detected in 22% of ILI cases and 10% of SARI cases. Children 0-4 years accounted for 48% all ILI and SARI cases of which 20% and 10 respectively were positive for influenza. Influenza peaks were generally discernible in North and South Africa. Substantial co-circulation of influenza A and B occurred most years. CONCLUSIONS: Influenza is a major cause of respiratory illness in Africa, especially in children. Further strengthening influenza surveillance, along with conducting special studies on influenza burden, cost of illness, and role of other respiratory pathogens will help detect novel influenza viruses and inform and develop targeted influenza prevention policy decisions in the region.The work presented in this manuscript was funded completely or in part by host governments, Institute Pasteur, and cooperative agreements with the U.S. Centers for Disease Control and Prevention and/or the U.S. Department of Defense.http://www.journals.uchicago.edu/toc/jid/currenthb2013ay201

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Business plan of an African fast food: Pilot project in Kenya

    No full text
    This thesis is about the business plan of the African fast food Zandi, a new place where workers would enjoy a real local meal in a cool and trendy atmosphere in no time. It will be divided into two different parts. The first part will address the question of the environment by determining the country in which the fast food would have to be settled. Once the country is chosen, the second part of the thesis will focus on the business plan.Master [120] en Ingénieur de gestion, Université catholique de Louvain, 2017La diffusion de ce mémoire n'est pas autorisée par l'institutio

    Business plan of an African fast food: Pilot project in Kenya

    No full text
    This thesis is about the business plan of the African fast food Zandi, a new place where workers would enjoy a real local meal in a cool and trendy atmosphere in no time. It will be divided into two different parts. The first part will address the question of the environment by determining the country in which the fast food would have to be settled. Once the country is chosen, the second part of the thesis will focus on the business plan.Master [120] en Ingénieur de gestion, Université catholique de Louvain, 2017La diffusion de ce mémoire n'est pas autorisée par l'institutio
    corecore