10 research outputs found

    Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology.

    Get PDF
    Organotypic co-cultures bridge the gap between standard two-dimensional culture and mouse models. Such assays increase the fidelity of pre-clinical studies, to better inform lead compound development and address the increasing attrition rates of lead compounds within the pharmaceutical industry, which are often a result of screening in less faithful two-dimensional models. Using large-scale acid-extraction techniques, we demonstrate a step-by-step process to isolate collagen I from commercially available animal byproducts. Using the well-established rat tail tendon collagen as a benchmark, we apply our novel kangaroo tail tendon collagen as an alternative collagen source for our screening-ready three-dimensional organotypic co-culture platform. Both collagen sources showed equal applicability for invasive, proliferative or survival assessment of well-established cancer models and clinically relevant patient-derived cancer cell lines. Additional readouts were also demonstrated when comparing these alternative collagen sources for stromal contributions to stiffness, organization and ultrastructure via atomic force microscopy, second harmonic generation imaging and scanning electron microscopy, among other vital biological readouts, where only minor differences were found between the preparations. Organotypic co-cultures represent an easy, affordable and scalable model to investigate drug responses within a physiologically relevant 3D platform

    Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

    Get PDF
    The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital FĂśrster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer

    A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts.

    Get PDF
    The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time

    Prediction of outcome of early ER+ breast cancer is improved using a biomarker panel, which includes Ki-67 and p53

    Get PDF
    The aim of this study is to determine whether immunohistochemical (IHC) assessment of Ki67 and p53 improves prognostication of oestrogen receptor-positive (ER+) breast cancer after breast-conserving therapy (BCT). In all, 498 patients with invasive breast cancer from a randomised trial of BCT with or without tumour bed radiation boost were assessed using IHC. The ER+ tumours were classified as ‘luminal A’ (LA): ER+ and/or PR+, Ki-67 low, p53-, HER2- or ‘luminal B’ (LB): ER+ and/or PR+ and/or Ki-67 high and/or p53+ and/or HER2+. Kaplan-Meier and Cox proportional hazards methodology were used to ascertain relationships to ispilateral breast tumour recurrence (IBTR), locoregional recurrence (LRR), distant metastasis-free survival (DMFS) and breast cancer-specific survival (BCSS). In all, 73 patients previously LA were re-classified as LB: a greater than four-fold increase (4.6-19.3%) compared with ER, PR, HER2 alone. In multivariate analysis, the LB signature independently predicted LRR (hazard ratio (HR) 3.612, 95% CI 1.555-8.340, P=0.003), DMFS (HR 3.023, 95% CI 1.501-6.087, P=0.002) and BCSS (HR 3.617, 95% CI 1.629-8.031, P=0.002) but not IBTR. The prognostic evaluation of ER+ breast cancer is improved using a marker panel, which includes Ki-67 and p53. This may help better define a group of poor prognosis ER+ patients with a greater probability of failure with endocrine therapy

    miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense

    No full text
    Radiotherapy is essential to the treatment of most solid tumors and acquired or innate resistance to this therapeutic modality is a major clinical problem. Here we show that miR-139-5p is a potent modulator of radiotherapy response in breast cancer via its regulation of genes involved in multiple DNA repair and reactive oxygen species defense pathways. Treatment of breast cancer cells with a miR-139-5p mimic strongly synergized with radiation both in vitro and in vivo, resulting in significantly increased oxidative stress, accumulation of unrepaired DNA damage, and induction of apoptosis. Several miR-139-5p target genes were also strongly predictive of outcome in radiotherapy-treated patients across multiple independent breast cancer cohorts. These prognostically relevant miR-139-5p target genes were used as companion biomarkers to identify radioresistant breast cancer xenografts highly amenable to sensitization by cotreatment with a miR-139-5p mimetic. Significance: The microRNA described in this study offers a potentially useful predictive biomarker of radiosensitivity in solid tumors and a generally applicable druggable target for tumor radiosensitization

    Tyrosine phosphorylation profiling reveals the signaling network characteristics of basal breast cancer cells

    No full text
    To identify therapeutic targets and prognostic markers for basal breast cancers, breast cancer cell lines were subjected to mass spectrometry-based profiling of protein tyrosine phosphorylation events. This revealed that luminal and basal breast cancer cells exhibit distinct tyrosine phosphorylation signatures that depend on pathway activation as well as protein expression. Basal breast cancer cells are characterized by elevated tyrosine phosphorylation of Met, Lyn, EphA2, epidermal growth factor receptor (EGFR), and FAK, and Src family kinase (SFK) substrates such as p130Cas. SFKs exert a prominent role in these cells, phosphorylating key regulators of adhesion and migration and promoting tyrosine phosphorylation of the receptor tyrosine kinases EGFR and Met. Consistent with these observations, SFK inhibition attenuated cellular proliferation, survival, and motility. Basal breast cancer cell lines exhibited differential responsiveness to small molecule inhibitors of EGFR and Met that correlated with the degree of target phosphorylation, and reflecting kinase coactivation, inhibiting two types of activated network kinase (e. g., EGFR and SFKs) was more effective than single agent approaches. FAK signaling enhanced both proliferation and invasion, and Lyn was identified as a proinvasive component of the network that is associated with a basal phenotype and poor prognosis in patients with breast cancer. These studies highlight multiple kinases and substrates for further evaluation as therapeutic targets and biomarkers. However, they also indicate that patient stratification based on expression/activation of drug targets, coupled with use of multi-kinase inhibitors or combination therapies, may be required for effective treatment of this breast cancer subgroup. Cancer Res; 70(22); 9391-401. (C) 2010 AACR.</p

    Intravital Imaging to Monitor Therapeutic Response in Moving Hypoxic Regions Resistant to PI3K Pathway Targeting in Pancreatic Cancer

    Get PDF
    Summary: Application of advanced intravital imaging facilitates dynamic monitoring of pathway activity upon therapeutic inhibition. Here, we assess resistance to therapeutic inhibition of the PI3K pathway within the hypoxic microenvironment of pancreatic ductal adenocarcinoma (PDAC) and identify a phenomenon whereby pronounced hypoxia-induced resistance is observed for three clinically relevant inhibitors. To address this clinical problem, we have mapped tumor hypoxia by both immunofluorescence and phosphorescence lifetime imaging of oxygen-sensitive nanoparticles and demonstrate that these hypoxic regions move transiently around the tumor. To overlay this microenvironmental information with drug response, we applied a FRET biosensor for Akt activity, which is a key effector of the PI3K pathway. Performing dual intravital imaging of drug response in different tumor compartments, we demonstrate an improved drug response to a combination therapy using the dual mTORC1/2 inhibitor AZD2014 with the hypoxia-activated pro-drug TH-302. : Intravital imaging facilitates the real-time tracking and targeting of moving hypoxic regions within pancreatic ductal adenocarcinoma. Using this approach, Conway et al. alleviate hypoxia-induced resistance to a dual mTORC1/2 inhibitor AZD2014, improving PI3K pathway inhibition and demonstrating a powerful dual imaging modality applicable to targeting other pathways and cancers. Keywords: pancreatic cancer, intravital imaging, hypoxia, FRET, pro-drug, PI3K pathway, nanoparticles, PLIM, Akt, AZD201

    Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

    No full text
    The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer
    corecore