26 research outputs found
Researching COVID to enhance recovery (RECOVER) tissue pathology study protocol: Rationale, objectives, and design.
ImportanceSARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or organ dysfunction after the acute phase of infection, termed Post-Acute Sequelae of SARS-CoV-2 (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are poorly understood. The objectives of the Researching COVID to Enhance Recovery (RECOVER) tissue pathology study (RECOVER-Pathology) are to: (1) characterize prevalence and types of organ injury/disease and pathology occurring with PASC; (2) characterize the association of pathologic findings with clinical and other characteristics; (3) define the pathophysiology and mechanisms of PASC, and possible mediation via viral persistence; and (4) establish a post-mortem tissue biobank and post-mortem brain imaging biorepository.MethodsRECOVER-Pathology is a cross-sectional study of decedents dying at least 15 days following initial SARS-CoV-2 infection. Eligible decedents must meet WHO criteria for suspected, probable, or confirmed infection and must be aged 18 years or more at the time of death. Enrollment occurs at 7 sites in four U.S. states and Washington, DC. Comprehensive autopsies are conducted according to a standardized protocol within 24 hours of death; tissue samples are sent to the PASC Biorepository for later analyses. Data on clinical history are collected from the medical records and/or next of kin. The primary study outcomes include an array of pathologic features organized by organ system. Causal inference methods will be employed to investigate associations between risk factors and pathologic outcomes.DiscussionRECOVER-Pathology is the largest autopsy study addressing PASC among US adults. Results of this study are intended to elucidate mechanisms of organ injury and disease and enhance our understanding of the pathophysiology of PASC
Vascular disorders in athletes
Athletes rarely present with symptoms or clinical findings suggestive of vascular disease. However, vascular etiologies should be considered when an athlete complains of persistent symptoms which are refractory to conservative therapies commonly used for presumed musculoskeletal injuries. A comprehensive history should be performed, with special consideration to the postures the athlete assumes repeatedly during their chosen sport. Musculoskeletal anatomy surrounding the vascular bed of interest should be thoroughly reviewed. Physical examination should include provocative maneuvers specific to the suspected vascular disorder. The proper use of noninvasive diagnostic studies, including duplex ultrasonography, computerized tomography (CT), and magnetic resonance imaging (MRI), along with catheter-based angiography, when indicated, can ensure prompt diagnosis. Appropriate, multifaceted treatment of an athlete affected by a vascular disorder can facilitate an expeditious return to previous levels of activity. </jats:p
Recommended from our members
Peripheral Ultrafiltration for the Prevention of Contrast Induced Nephropathy: A Pilot Study
1152-201 Brain natriuretic peptide correlates with myocardial performance index in congenital heart disease patients
Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability
The role of atherosclerotic calcification in plaque rupture remains controversial. In previous analyses using finite element model analysis, circumferential stress was reduced by the inclusion of a calcium deposit in a representative human anatomical configuration. However, a recent report, also using finite element analysis, suggests that microscopic calcium deposits increase plaque stress. We used mathematical models to predict the effects of rigid and liquid inclusions (modeling a calcium deposit and a lipid necrotic core, respectively) in a distensible material (artery wall) on mechanical failure under uniaxial and biaxial loading in a range of configurations. Without inclusions, stress levels were low and uniform. In the analytical model, peak stresses were elevated at the edges of a rigid inclusion. In the finite element model, peak stresses were elevated at the edges of both inclusions, with minimal sensitivity to the wall distensibility and the size and shape of the inclusion. Presence of both a rigid and a soft inclusion enlarged the region of increased wall stress compared with either alone. In some configurations, the rigid inclusion reduced peak stress at the edge of the soft inclusion but simultaneously increased peak stress at the edge of the rigid inclusion and increased the size of the region affected. These findings suggest that the presence of a calcium deposit creates local increases in failure stress, and, depending on relative position to any neighboring lipid pools, it may increase peak stress and the plaque area at risk of mechanical failure
Opportunities and Challenges in Using Electronic Health Record Systems to Study Postacute Sequelae of SARS-CoV-2 Infection: Insights From the NIH RECOVER Initiative
The benefits and challenges of electronic health records (EHRs) as data sources for clinical and epidemiologic research have been well described. However, several factors are important to consider when using EHR data to study novel, emerging, and multifaceted conditions such as postacute sequelae of SARS-CoV-2 infection or long COVID. In this article, we present opportunities and challenges of using EHR data to improve our understanding of long COVID, based on lessons learned from the National Institutes of Health (NIH)–funded RECOVER (REsearching COVID to Enhance Recovery) Initiative, and suggest steps to maximize the usefulness of EHR data when performing long COVID research
Opportunities and Challenges in Using Electronic Health Record Systems to Study Postacute Sequelae of SARS-CoV-2 Infection: Insights From the NIH RECOVER Initiative
The benefits and challenges of electronic health records (EHRs) as data sources for clinical and epidemiologic research have been well described. However, several factors are important to consider when using EHR data to study novel, emerging, and multifaceted conditions such as postacute sequelae of SARS-CoV-2 infection or long COVID. In this article, we present opportunities and challenges of using EHR data to improve our understanding of long COVID, based on lessons learned from the National Institutes of Health (NIH)-funded RECOVER (REsearching COVID to Enhance Recovery) Initiative, and suggest steps to maximize the usefulness of EHR data when performing long COVID research
