7 research outputs found

    Direct manipulation of liquid ordered lipid membrane domains using optical traps

    Get PDF
    Multicomponent lipid bilayers can give rise to coexisting liquid domains that are thought to influence a host of cellular activities. There currently exists no method to directly manipulate such domains, hampering our understanding of their significance. Here we report a system that allows individual liquid ordered domains that exist in a liquid disordered matrix to be directly manipulated using optical tweezers. This allows us to drag domains across the membrane surface of giant vesicles that are adhered to a glass surface, enabling domain location to be defined with spatiotemporal control. We can also use the laser to select individual vesicles in a population to undergo mixing/demixing by locally heating the membrane through the miscibility transition, demonstrating a further layer of control. This technology has potential as a tool to shed light on domain biophysics, on their role in biology, and in sculpting membrane assemblies with user-defined membrane patterning

    Sculpting and fusing biomimetic vesicle networks using optical tweezers

    Get PDF
    Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-Triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components

    Protein degradation rate is the dominant mechanism accounting for the differences in protein abundance of basal p53 in a human breast and colorectal cancer cell line

    Get PDF
    <div><p>We determine p53 protein abundances and cell to cell variation in two human cancer cell lines with single cell resolution, and show that the fractional width of the distributions is the same in both cases despite a large difference in average protein copy number. We developed a computational framework to identify dominant mechanisms controlling the variation of protein abundance in a simple model of gene expression from the summary statistics of single cell steady state protein expression distributions. Our results, based on single cell data analysed in a Bayesian framework, lends strong support to a model in which variation in the basal p53 protein abundance may be best explained by variations in the rate of p53 protein degradation. This is supported by measurements of the relative average levels of mRNA which are very similar despite large variation in the level of protein.</p></div
    corecore