52 research outputs found

    Modulation of dendritic cells by human neutrophil elastase and its inhibitors in pulmonary inflammation

    Get PDF
    Dendritic cells (DC) are sentinels of the immune system that display an extraordinary capacity to present antigen to naïve T cells and initiate immune responses. DCs are distributed throughout the lungs in the conducting airways of the tracheobronchial tree and in the parenchymal lung, and play a pivotal role in controlling the immune response to inhaled antigens. The respiratory surface is continually exposed to potentially injurious particulates and pathogenic organisms, to which tightly regulated innate and adaptive immunological responses are made. The airways are usually sterile in healthy individuals. However, patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) have increased susceptibility to microbial infections and increased neutrophil elastase (NE) in lung secretions. This thesis was designed to test the hypotheses that; (i) excess NE may result in a dysregulation of lung DCs function in pulmonary chronic diseases, and (ii) the natural NE inhibitors in the respiratory system are able to rescue the NE-mediated dysregulation of DCs and potentially enhance their antigen presenting activity. The data in this thesis demonstrate that purified human NE down-regulated murine bone marrow (BM)-derived DC co-stimulatory molecules (CSM; CD40, CD80 and CD86), which was due to its proteolytic activity. NE-treated LPS-matured DCs were less efficient at presenting ovalbumin (OVA) peptide to naïve OVAspecific transgenic (D011.10) T cells. In addition, immature DCs (iDC) simultaneously treated with LPS and NE failed to mature fully and produced significantly less IL-12 and TNF-α than DCs matured in the presence of LPS alone. Similarly, treatment of mature DC (mDC) with pooled and individual COPD and CF sputum samples caused a reduction in CD80 and CD86 levels (but not CD40) which positively correlated with the NE concentration present in the samples. The demonstration that NE could adversely affect DC phenotype and function suggested that augmentation of NE inhibitors could reverse this process and preserve DC function in inflammatory microenvironments. Over-expression of an NE specific inhibitor (elafin) in the lungs of mice (using either replication-deficient adenovirus [Ad] or elafin transgenic [eTg] mice) increased the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung DCs in in vivo models. Replication-deficient Ad vectors encoding NE inhibitors, namely elafin, secretory leukocyte protease inhibitor (SLPI) and α1-protease inhibitor (α1-PI), were also used to infect DCs in vitro, to further study the effect of these NE-inhibitors on DCs in isolation. These findings suggest that purified NE and NE-containing lung inflammatory secretions are powerful down-regulators of DC maturation, resulting in reduced capacity of these potent APCs to efficiently present antigens; whereas, NE inhibitors could boost immunity by increasing the activation state and/or number of DCs

    B Cells Promote Pancreatic Tumorigenesis

    Get PDF
    Summary: Three recent studies, approaching the question from different angles and using different and/or overlapping models, provide compelling evidence for the involvement of tumor-infiltrating B cells in the initiation and progression of pancreatic ductal adenocarcinoma. These studies highlight the need for a better understanding of pancreatic tumor–immune system interactions and the immunologic mechanisms that promote or inhibit tumorigenesis, paving the way for better treatment strategies.Bloodwise (UK) (Visiting Fellowship Grant (14043)

    Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes

    Get PDF
    Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes

    Human leukocyte immunoglobulin-like receptors in health and disease

    Get PDF
    Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors

    Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics

    Get PDF
    The blood–brain barrier (BBB) acts as a barrier to prevent the central nervous system (CNS) from damage by substances that originate from the blood circulation. The BBB limits drug penetration into the brain and is one of the major clinical obstacles to the treatment of CNS diseases. Nanotechnology-based delivery systems have been tested for overcoming this barrier and releasing related drugs into the brain matrix. In this review, nanoparticles (NPs) from simple to developed delivery systems are discussed for the delivery of a drug to the brain. This review particularly focuses on polymeric nanomaterials that have been used for CNS treatment. Polymeric NPs such as polylactide (PLA), poly (D, L-lactide-co-glycolide) (PLGA), poly (ε-caprolactone) (PCL), poly (alkyl cyanoacrylate) (PACA), human serum albumin (HSA), gelatin, and chitosan are discussed in detail

    LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation.

    Get PDF
    Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor

    Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy

    No full text
    In recent decades, immunotherapeutic strategies have been used to treat a wide range of pathologies, many of which were previously incurable, such as cancer and autoimmune disorders. Despite this unprecedented success, a considerable number of patients fail to respond to currently approved immunotherapies or develop resistance over time. Therefore, there is an urgent need to develop the next generation of immune-targeted therapies. Various members of the Ig superfamily play essential roles in regulating leukocyte functions. One such group, the leukocyte Ig-like receptors (LILRs), have been implicated in both innate and adaptive immune regulation. Human inhibitory LILRs (LILRBs) are primarily expressed on leukocytes and mediate their signaling through multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Engagement of LILRBs by endogenous and pathogenic ligands can markedly suppress immune responses, leading to tolerance or immunoevasion, whereas blocking these inhibitory receptors can potentiate immune responses. In this Review, we discuss the immunoregulatory functions of human LILRBs and the potential of targeting them to manipulate immune responses in various pathologies

    Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease)

    No full text
    Proteases and antiproteases have multiple important roles both in normal homeostasis and during inflammation. Antiprotease molecules may have developed in a parallel network, consisting of "alarm" and "systemic" inhibitors. Their primary function was thought until recently to mainly prevent the potential injurious effects of excess release of proteolytic enzymes, such as neutrophil elastase (NE), from inflammatory cells. However, recently, new potential roles have been ascribed to these antiproteases. We will review "canonical" and new "noncanonical" functions for these molecules, and more particularly, those pertaining to their role in innate and adaptive immunity (antibacterial activity and biasing of the adaptive immune response)

    Modulation of dendritic cells by human neutrophil elastase and its inhibitors in pulmonary inflammation

    No full text
    Dendritic cells (DC) are sentinels of the immune system that display an extraordinary capacity to present antigen to naïve T cells and initiate immune responses. DCs are distributed throughout the lungs in the conducting airways of the tracheobronchial tree and in the parenchymal lung, and play a pivotal role in controlling the immune response to inhaled antigens. The respiratory surface is continually exposed to potentially injurious particulates and pathogenic organisms, to which tightly regulated innate and adaptive immunological responses are made. The airways are usually sterile in healthy individuals. However, patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) have increased susceptibility to microbial infections and increased neutrophil elastase (NE) in lung secretions. This thesis was designed to test the hypotheses that; (i) excess NE may result in a dysregulation of lung DCs function in pulmonary chronic diseases, and (ii) the natural NE inhibitors in the respiratory system are able to rescue the NE-mediated dysregulation of DCs and potentially enhance their antigen presenting activity. The data in this thesis demonstrate that purified human NE down-regulated murine bone marrow (BM)-derived DC co-stimulatory molecules (CSM; CD40, CD80 and CD86), which was due to its proteolytic activity. NE-treated LPS-matured DCs were less efficient at presenting ovalbumin (OVA) peptide to naïve OVAspecific transgenic (D011.10) T cells. In addition, immature DCs (iDC) simultaneously treated with LPS and NE failed to mature fully and produced significantly less IL-12 and TNF-α than DCs matured in the presence of LPS alone. Similarly, treatment of mature DC (mDC) with pooled and individual COPD and CF sputum samples caused a reduction in CD80 and CD86 levels (but not CD40) which positively correlated with the NE concentration present in the samples. The demonstration that NE could adversely affect DC phenotype and function suggested that augmentation of NE inhibitors could reverse this process and preserve DC function in inflammatory microenvironments. Over-expression of an NE specific inhibitor (elafin) in the lungs of mice (using either replication-deficient adenovirus [Ad] or elafin transgenic [eTg] mice) increased the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung DCs in in vivo models. Replication-deficient Ad vectors encoding NE inhibitors, namely elafin, secretory leukocyte protease inhibitor (SLPI) and α1-protease inhibitor (α1-PI), were also used to infect DCs in vitro, to further study the effect of these NE-inhibitors on DCs in isolation. These findings suggest that purified NE and NE-containing lung inflammatory secretions are powerful down-regulators of DC maturation, resulting in reduced capacity of these potent APCs to efficiently present antigens; whereas, NE inhibitors could boost immunity by increasing the activation state and/or number of DCs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore