39,152 research outputs found

    Video vehicle detection at signalised junctions: a simulation-based study

    Get PDF
    Many existing advanced methods of traffic signal control depend on information about approaching traffic provided by inductive loop detectors at particular points in the road. But analysis of images from CCTV cameras can in principle provide more comprehensive information about traffic approaching and passing through junctions, and cameras may be easier to install and maintain than loop detectors, and some systems based on video detection have already been in use for some time. Against this background, computer simulation has been used to explore the potential of existing and immediately foreseeable capability in automatic on-line image analysis to extract information relevant to signal control from images provided by cameras mounted in acceptable positions at signal-controlled junctions. Some consequences of extracting relevant information in different ways were investigated in the context of an existing detailed simulation model of vehicular traffic moving through junctions under traffic-responsive signal control, and the development of one basic and one advanced algorithm for traffic-responsive control. The work was confined as a first step to operation of one very simple signalcontrolled junction. Two techniques for extraction of information from images were modelled - a more ambitious technique based on distinguishing most of the individual vehicles visible to the camera, and a more modest technique requiring only that the presence of vehicles in any part of the image be distinguished from the background scene. In the latter case, statistical modelling was used to estimate the number of vehicles corresponding to any single area of the image that represents vehicles rather than background. At the simple modelled junction, each technique of extraction enabled each of the algorithms for traffic-responsive control of the signals to achieve average delays per vehicle appreciably lower than those given by System D control, and possibly competitive with those that MOVA would give, but comparison with MOVA was beyond the scope of the initial study. These results of simulation indicate that image analysis of CCTV pictures should be able to provide sufficient information in practice for traffic-responsive control that is competitive with existing techniques. Ways in which the work could be taken further were discussed with practitioners, but have not yet been progressed

    Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons

    Full text link
    Multistability, the coexistence of multiple attractors in a dynamical system, is explored in bursting nerve cells. A modeling study is performed to show that a large class of bursting systems, as defined by a shared topology when represented as dynamical systems, is inherently suited to support multistability. We derive the bifurcation structure and parametric trends leading to multistability in these systems. Evidence for the existence of multirhythmic behavior in neurons of the aquatic mollusc Aplysia californica that is consistent with our proposed mechanism is presented. Although these experimental results are preliminary, they indicate that single neurons may be capable of dynamically storing information for longer time scales than typically attributed to nonsynaptic mechanisms.Comment: 24 pages, 8 figure

    Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity

    Get PDF
    Spontaneous synchronization is a significant collective behavior of weakly coupled systems. Due to their inherent nonlinear nature, optomechanical systems can exhibit self-sustained oscillations which can be exploited for synchronizing different mechanical resonators. In this paper, we explore the synchronization dynamics of two membranes coupled to a common optical field within a cavity, and pumped with a strong blue-detuned laser drive. We focus on the system quantum dynamics in the parameter regime corresponding to synchronization of the classical motion of the two membranes. With an appropriate definition of the phase difference operator for the resonators, we study synchronization in the quantum case through the covariance matrix formalism. We find that for sufficiently large driving, quantum synchronization is robust with respect to quantum fluctuations and to thermal noise up to not too large temperatures. Under synchronization, the two membranes are never entangled, while quantum discord behaves similarly to quantum synchronization, that is, it is larger when the variance of the phase difference is smaller

    Spectral Singularities of Complex Scattering Potentials and Infinite Reflection and Transmission Coefficients at real Energies

    Full text link
    Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a wave guide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic wave guide.Comment: Published versio

    On the truncation of the harmonic oscillator wavepacket

    Get PDF
    We present an interesting result regarding the implication of truncating the wavepacket of the harmonic oscillator. We show that disregarding the non-significant tails of a function which is the superposition of eigenfunctions of the harmonic oscillator has a remarkable consequence: namely, there exist infinitely many different superpositions giving rise to the same function on the interval. Uniqueness, in the case of a wavepacket, is restored by a postulate of quantum mechanics
    • …
    corecore