28,806 research outputs found

    Statistical PT-symmetric lasing in an optical fiber network

    Full text link
    PT-symmetry in optics is a condition whereby the real and imaginary parts of the refractive index across a photonic structure are deliberately balanced. This balance can lead to a host of novel optical phenomena, such as unidirectional invisibility, loss-induced lasing, single-mode lasing from multimode resonators, and non-reciprocal effects in conjunction with nonlinearities. Because PT-symmetry has been thought of as fragile, experimental realizations to date have been usually restricted to on-chip micro-devices. Here, we demonstrate that certain features of PT-symmetry are sufficiently robust to survive the statistical fluctuations associated with a macroscopic optical cavity. We construct optical-fiber-based coupled-cavities in excess of a kilometer in length (the free spectral range is less than 0.8 fm) with balanced gain and loss in two sub-cavities and examine the lasing dynamics. In such a macroscopic system, fluctuations can lead to a cavity-detuning exceeding the free spectral range. Nevertheless, by varying the gain-loss contrast, we observe that both the lasing threshold and the growth of the laser power follow the predicted behavior of a stable PT-symmetric structure. Furthermore, a statistical symmetry-breaking point is observed upon varying the cavity loss. These findings indicate that PT-symmetry is a more robust optical phenomenon than previously expected, and points to potential applications in optical fiber networks and fiber lasers.Comment: Submitted to Nature Communications, Pages 1-19: Main manuscript; Pages 20-38: Supplementary material

    Squeezed States and Hermite polynomials in a Complex Variable

    Full text link
    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pur. Appl. Math. 14, 187 (1961)].Comment: 15 page

    O(αs)O(\alpha_s) Corrections to BXse+eB \to X_s e^+ e^- Decay in the 2HDM

    Full text link
    O(αs)O(\alpha_s) QCD corrections to the inclusive BXse+eB \to X_s e^+ e^- decay are investigated within the two - Higgs doublet extension of the standard model (2HDM). The analysis is performed in the so - called off-resonance region; the dependence of the obtained results on the choice of the renormalization scale is examined in details. It is shown that O(αs)O(\alpha_s) corrections can suppress the BXse+eB \to X_s e^+ e^- decay width up to 1.5÷31.5 \div 3 times (depending on the choice of the dilepton invariant mass ss and the low - energy scale μ\mu). As a result, in the experimentally allowed range of the parameters space, the relations between the BXse+eB \to X_s e^+ e^- branching ratio and the new physics parameters are strongly affected. It is found also that though the renormalization scale dependence of the BXse+eB \to X_s e^+ e^- branching is significantly reduced, higher order effects in the perturbation theory can still be nonnegligible.Comment: 16 pages, latex, including 6 figures and 3 table

    Transparent Perfect Mirror

    Full text link
    A mirror that reflects light fully and yet is transparent appears paradoxical. Current so-called transparent or "one-way" mirrors are not perfectly reflective and thus can be distinguished from a standard mirror. Constructing a transparent "perfect" mirror has profound implications for security, privacy, and camouflage. However, such a hypothetical device cannot be implemented in a passive structure. We demonstrate here a transparent perfect mirror in a non-Hermitian configuration: an active optical cavity where a certain prelasing gain extinguishes Poynting's vector at the device entrance. At this threshold, all vestiges of the cavity's structural resonances are eliminated and the device presents spectrally flat unity-reflectivity, thus, becoming indistinguishable from a perfect mirror when probed optically across the gain bandwidth. Nevertheless, the device is rendered transparent by virtue of persisting amplified transmission resonances. We confirm these predictions in two photonic realizations: a compact integrated active waveguide and a macroscopic all-optical-fiber system.Comment: The paper is highlighted in Nature Photonics: http://www.nature.com/nphoton/journal/v11/n6/full/nphoton.2017.90.html The supplementary data is available in: http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.7b0005

    Submm-bright QSOs at z~2: signposts of co-evolution at high z

    Full text link
    We have assembled a sample of 5 X-ray and submm-luminous z~2 QSOs which are therefore both growing their central black holes through accretion and forming stars copiously at a critical epoch. Hence, they are good laboratories to investigate the co-evolution of star formation and AGN. We have performed a preliminary analysis of the AGN and SF contributions to their UV-to-FIR SEDs, fitting them with simple direct (disk), reprocessed (torus) and star formation components. All three are required by the data and hence we confirm that these objects are undergoing strong star formation in their host galaxies at rates 500-2000 Msun/y. Estimates of their covering factors are between about 30 and 90%. In the future, we will assess the dependence of these results on the particular models used for the components and relate their observed properties to the intrinsice of the central engine and the SF material, as well as their relevance for AGN-galaxy coevolution.Comment: 6 pages, 2 figures, contributed talk to "Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation" November 6-8, 2012. MPIfR, Bonn, Germany. Po

    Supersymmetric Effects on Isospin Symmetry Breaking and Direct CP Violation in BργB \to \rho \gamma

    Full text link
    We argue that one can search for physics beyond the standard model through measurements of the isospin-violating quantity Δ0Γ(Bργ)/2Γ(B0ρ0γ)1\Delta^{-0} \equiv \Gamma(B^- \to \rho^- \gamma)/2\Gamma(B^0 \to \rho^0 \gamma)-1, its charge conjugate Δ+0\Delta^{+0}, and direct CP violation in the partial decay rates of B±ρ±γB^\pm \to \rho^\pm \gamma. We illustrate this by working out theoretical profiles of the charge-conjugate averaged ratio Δ12(Δ+0+Δ0)\Delta \equiv {1 \over 2}(\Delta^{+0} +\Delta^{-0}) and the CP asymmetry ACP(B±ρ±γ)A_{CP}(B^\pm \to \rho^\pm \gamma) in the standard model and in some variants of the minimal supersymmetric standard model. We find that chargino contributions in the large tanβ\tan \beta region may modify the magnitudes and flip the signs of Δ\Delta and ACP(B±ρ±γ)A_{CP}(B^\pm \to \rho^\pm \gamma) compared to their standard-model values, providing an unmistakeable signature of supersymmetry.Comment: 10 pages, 7 figures (requires graphicx
    corecore