353 research outputs found

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Vapor phase preparation and characterization of the carbon micro-coils

    Get PDF

    Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome

    No full text
    Summary: The degradation and release of cardiac myosin binding protein-C (cMyBP-C) upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb) production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in cardiovascular disease patients. Importantly, cMyBP-C-AAbs were significantly detected in acute coronary syndrome patient sera upon arrival to the emergency department, particularly in ST-segment elevation myocardial infarction patients. Patients positive for cMyBP-C-AAbs had reduced left ventricular ejection fraction and elevated levels of clinical biomarkers of myocardial infarction. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in acute coronary syndrome patients prior to the infarction. Key Words: acute myocardial infarction, autoantibodies, cardiac myosin binding protein-c, cardiomyopath

    DEXA measures of body fat percentage and acute phase proteins among breast cancer survivors: a Cross-Sectional Analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>C-reactive protein (CRP) and Serum amyloid A protein (SAA) increases with systemic inflammation and are related to worse survival for breast cancer survivors. This study examines the association between percent body fat and SAA and CRP and the potential interaction with NSAID use and weight change.</p> <p>Methods</p> <p>Participants included 134 non-Hispanic white and Hispanic breast cancer survivors from the Health, Eating, Activity, and Lifestyle Study. Body fat percentage, measured with Dual Energy X-ray Absorptiometer (DEXA), and circulating levels of CRP and SAA were obtained 30 months after breast cancer diagnosis.</p> <p>Results</p> <p>Circulating concentrations of CRP and SAA were associated with increased adiposity as measured by DEXA after adjustment for age at 24-months, race/ethnicity, dietary energy intake, weight change, and NSAID use. Survivors with higher body fat ≥35% had significantly higher concentrations of CRP (2.01 mg/l vs. 0.85 mg/l) and SAA (6.21 mg/l vs. 4.21 mg/l) compared to non-obese (body fat < 35%). Women who had gained more than 5% of their body weight since breast cancer diagnosis had non-statistically significant higher geometric mean levels of CRP and SAA. Mean levels of CRP and SAA were higher among obese women who were non-users of NSAIDs compared to current users; the association with SAA reached statistical significance (Mean SAA = 7.24, 95%CI 6.13-8.56 for non-NSAID; vs. 4.87; 95%CI 3.95-6.0 for NSAID users respectively).</p> <p>Conclusions</p> <p>Breast cancer survivors with higher body fat had higher mean concentrations of CRP and SAA than women with lower body fat. Further assessment of NSAID use and weight control in reducing circulating inflammatory markers among survivors may be worthwhile to investigate in randomized intervention trials as higher inflammatory markers are associated with worse survival.</p

    Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021 : a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    Background Lower respiratory infections (LRIs) are a major global contributor to morbidity and mortality. In 2020–21, non-pharmaceutical interventions associated with the COVID-19 pandemic reduced not only the transmission of SARS-CoV-2, but also the transmission of other LRI pathogens. Tracking LRI incidence and mortality, as well as the pathogens responsible, can guide health-system responses and funding priorities to reduce future burden. We present estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 of the burden of non-COVID-19 LRIs and corresponding aetiologies from 1990 to 2021, inclusive of pandemic effects on the incidence and mortality of select respiratory viruses, globally, regionally, and for 204 countries and territories. Methods We estimated mortality, incidence, and aetiology attribution for LRI, defined by the GBD as pneumonia or bronchiolitis, not inclusive of COVID-19. We analysed 26 259 site-years of mortality data using the Cause of Death Ensemble model to estimate LRI mortality rates. We analysed all available age-specific and sex-specific data sources, including published literature identified by a systematic review, as well as household surveys, hospital admissions, health insurance claims, and LRI mortality estimates, to generate internally consistent estimates of incidence and prevalence using DisMod-MR 2.1. For aetiology estimation, we analysed multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature data using a network analysis model to produce the proportion of LRI deaths and episodes attributable to the following pathogens: Acinetobacter baumannii, Chlamydia spp, Enterobacter spp, Escherichia coli, fungi, group B streptococcus, Haemophilus influenzae, influenza viruses, Klebsiella pneumoniae, Legionella spp, Mycoplasma spp, polymicrobial infections, Pseudomonas aeruginosa, respiratory syncytial virus (RSV), Staphylococcus aureus, Streptococcus pneumoniae, and other viruses (ie, the aggregate of all viruses studied except influenza and RSV), as well as a residual category of other bacterial pathogens. Findings Globally, in 2021, we estimated 344 million (95% uncertainty interval [UI] 325–364) incident episodes of LRI, or 4350 episodes (4120–4610) per 100 000 population, and 2·18 million deaths (1·98–2·36), or 27·7 deaths (25·1–29·9) per 100 000. 502 000 deaths (406 000–611 000) were in children younger than 5 years, among which 254 000 deaths (197 000–320 000) occurred in countries with a low Socio-demographic Index. Of the 18 modelled pathogen categories in 2021, S pneumoniae was responsible for the highest proportions of LRI episodes and deaths, with an estimated 97·9 million (92·1–104·0) episodes and 505 000 deaths (454 000–555 000) globally. The pathogens responsible for the second and third highest episode counts globally were other viral aetiologies (46·4 million [43·6–49·3] episodes) and Mycoplasma spp (25·3 million [23·5–27·2]), while those responsible for the second and third highest death counts were S aureus (424 000 [380 000–459 000]) and K pneumoniae (176 000 [158 000–194 000]). From 1990 to 2019, the global all-age non-COVID-19 LRI mortality rate declined by 41·7% (35·9–46·9), from 56·5 deaths (51·3–61·9) to 32·9 deaths (29·9–35·4) per 100 000. From 2019 to 2021, during the COVID-19 pandemic and implementation of associated non-pharmaceutical interventions, we estimated a 16·0% (13·1–18·6) decline in the global all-age non-COVID-19 LRI mortality rate, largely accounted for by a 71·8% (63·8–78·9) decline in the number of influenza deaths and a 66·7% (56·6–75·3) decline in the number of RSV deaths. Interpretation Substantial progress has been made in reducing LRI mortality, but the burden remains high, especially in low-income and middle-income countries. During the COVID-19 pandemic, with its associated non-pharmaceutical interventions, global incident LRI cases and mortality attributable to influenza and RSV declined substantially. Expanding access to health-care services and vaccines, including S pneumoniae, H influenzae type B, and novel RSV vaccines, along with new low-cost interventions against S aureus, could mitigate the LRI burden and prevent transmission of LRI-causing pathogens. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care (UK)

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore