3,468 research outputs found

    Assortative mixing in close-packed spatial networks

    Get PDF
    Background In recent years, there is aroused interest in expressing complex systems as networks of interacting nodes. Using descriptors from graph theory, it has been possible to classify many diverse systems derived from social and physical sciences alike. In particular, folded proteins as examples of self-assembled complex molecules have also been investigated intensely using these tools. However, we need to develop additional measures to classify different systems, in order to dissect the underlying hierarchy. Methodology and Principal Findings In this study, a general analytical relation for the dependence of nearest neighbor degree correlations on degree is derived. Dependence of local clustering on degree is shown to be the sole determining factor of assortative versus disassortative mixing in networks. The characteristics of networks constructed from spatial atomic/molecular systems exemplified by self-organized residue networks built from folded protein structures and block copolymers, atomic clusters and well-compressed polymeric melts are studied. Distributions of statistical properties of the networks are presented. For these densely-packed systems, assortative mixing in the network construction is found to apply, and conditions are derived for a simple linear dependence. Conclusions Our analyses (i) reveal patterns that are common to close-packed clusters of atoms/molecules, (ii) identify the type of surface effects prominent in different close-packed systems, and (iii) associate fingerprints that may be used to classify networks with varying types of correlations

    Climatic indices in assessing of temperature and precipitation patterns in Turkey

    Get PDF
    Ponencia presentada en: VI Congreso Internacional de la Asociación Española de Climatología celebrado en Tarragona del 8 al 11 de octubre de 2008
    corecore