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Abstract 

Background 

In recent years, there is aroused interest in expressing complex systems as networks of 

interacting nodes. Using descriptors from graph theory, it has been possible to classify many 

diverse systems derived from social and physical sciences alike. In particular, folded proteins 

as examples of self-assembled complex molecules have also been investigated intensely using 

these tools. However, we need to develop additional measures to classify different systems, in 

order to dissect the underlying hierarchy. 

Methodology and Principal Findings 

In this study, a general analytical relation for the dependence of nearest neighbor degree 

correlations on degree is derived. Dependence of local clustering on degree is shown to be the 

sole determining factor of assortative versus disassortative mixing in networks. The 

characteristics of networks constructed from spatial atomic/molecular systems exemplified by 

self-organized residue networks built from folded protein structures and block copolymers, 

atomic clusters and well-compressed polymeric melts are studied. Distributions of statistical 

properties of the networks are presented. For these densely-packed systems, assortative 

mixing in the network construction is found to apply, and conditions are derived for a simple 

linear dependence.  

Conclusions 

Our analyses (i) reveal patterns that are common to close-packed clusters of atoms/molecules, 

(ii) identify the type of surface effects prominent in different close-packed systems, and (iii) 

associate fingerprints that may be used to classify networks with varying types of correlations.  
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Introduction 

The study of real life networks, such as the world-wide web [1], internet [2], power-grids [3] 

and math co-authorship [4], has put forth properties that distinguish them from classical 

Erdös-Rényi random networks [5]. The variety of degree distributions and other statistical 

measures that emerge has heightened the interest in complex networks. With the proposition 

of algorithms by Watts-Strogatz [3] and Barabási-Albert [6] to generate real life-like 

networks, this area has been investigated extensively [7,8]. The classification of networks is 

mostly based on measures such as degree distributions, average clustering, and average path 

length [9,10]. Recently, spectral properties of networks gained attention since the distribution 

of eigenvalues characterize several aspects of the network such as algebraic connectivity and 

bipartiteness [11,12,13]. Although there may be different graphs structures with identical 

Laplacian spectra that define the network, they often show similar characteristics in terms of 

network parameters [14]. Several heuristic algorithms are proposed to generate networks from 

their spectra [15]. 

In recent years, proteins were investigated as networks, by taking the amino-acids as nodes. 

Termed as residue networks (RN), edges between neighboring nodes are represented by their 

bonded and non-bonded interactions [16,17,18,19]. Several studies have shown that residue 

networks have small-world topology [16,20,21,22], characterized by their logarithmically 

scaling average path lengths with network size, despite displaying high clustering. Further 

studies also utilized network models for protein structures to predict hot spots [23,24,25,26], 

conserved sites [23,24,25,26,27,28,29], domain motions [23,24,25,26,30,31], functional 

residues [32,33,34,35] and protein-protein interactions [36]. The small-world topology of 

residue networks is established, and various network properties such as the clustering 

coefficient, path length, and degree distribution are used to account for, e.g. the different fold-

types in proteins [27], interfacial recognition sites of RNA [28], and bridging interactions 

along the interface of interacting proteins [17]. In light of these studies, we expect other self-

organized molecular systems of synthetic origin to display similar topology.  

In fact, a hierarchical arrangement of the nodes is expected to occur in self-organization of 

atoms and molecules under the influence of free energetic driving forces. In graph theory, 

hierarchies have been quantified by the presence of (dis)assortative mixing of their degrees, 

defined as nodes with high degrees having a tendency to interact with other nodes of 
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(low)high degrees [37]. Analytical and computational models for generating assortatively 

mixed networks were proposed [38,39]. Newman has shown that assortatively mixed 

networks percolate more easily and they are more robust towards vertex removal [38,40]; 

most social networks are examples of these. In this work, we find RN of proteins to also have 

assortative mixing, although many biological networks such as protein-protein interactions 

and food webs were found to display disassortative behavior.  

It is expected that in networks displaying any degree of correlations, local properties of the 

constructed graphs will have an effect on the global features. However, a connection between 

the local and global network properties and the underlying structure of molecular systems has 

yet to be established. In this study, we derive a relationship relating the nearest neighbor 

degree correlation of nodes, their degree, and clustering coefficient. We next show that a 

linear relationship is valid for two types of self-organized molecular systems: (i) Folded 

proteins and (ii) block co-oligomers in a solvent that encourages micelle formation. 

Furthermore, simulated configurations of Lennard-Jones clusters also approximate the 

findings as well as a simple polymeric system forced into a close-packed structure under 

extremely high pressure. We also show that model hexagonal close packed (HCP) structures 

may be used to reproduce many of the graph properties of the above-mentioned systems. A 

brief description of the model systems are summarized under the Methods section. This study 

is a first step towards using statistical characterization in determining the design principles 

underlying organization of complex molecular networks. 

Results 

Relationship between knn and k. We expand on the treatment in ref. [41] to derive a general 

relationship for the nearest-neighbor degree correlation, knn, for graphs with non-negligible 

clustering coefficients, C, defined below.  

An un-weighted simple network can be identified fully via the adjacency matrix (A), 

constructed as 

 1 if nodes and areconnected

0 if nodes and arenot connected
ij

i j
A

i j


 


 (1) 

Several parameters are defined to classify networks; each can be computed from the 

adjacency matrix and are considered as either a local or a global parameter. The simplest 

parameter is the connectivity, ki, of node i, also known as the degree; 
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Poisson, Gaussian or Power law degree distributions are frequently observed in many real life 

networks.  

Higher order degree correlations are also of importance and may be utilized to identify more 

distinguishing features of the network. For instance, second degree correlation of a node i, 

denoted by knn,i, is the average connections of its neighbors and may be written in terms of the 

adjacency matrix. 
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knn,i is also referred to as nearest-neighbor degree correlation. Normalized third degree 

correlations (Ci), also termed clustering coefficient, is widely used to characterize the 

distinctness of networks [3,6]. It is defined as the ratio of the number of interconnections 

between a node’s neighbors to the number of all its possible connections, i.e.; 
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While ki, knn,i, and Ci are descriptors of local structure, another common parameter used to 

classify the global structure of networks is the average shortest path length, Li of a node. 

Given that the shortest number of steps to reach node i from node j along the network is Lij, it 

is the average number of steps that are traversed from all other nodes to node i. 

The generating function, G0(x), for the probability distribution of vertex degrees k is given by, 
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where 1x , pk is the probability that a randomly chosen vertex on the graph has degree k, 

and its distribution is normalized with G0(1)=1. The G0(x) function generates the probability 

distribution, capturing all the discrete probability values through the derivatives property, 
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The n
th

 moment of the distribution can thus be calculated from  
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In particular, the average degree of a vertex is )1('

0Gkpzk
k k   . Here the superscript 

prime denotes differentiation with respect to x.  

If one randomly chooses m vertices from a graph, than the powers property of the generating 

function provides a route to generating the distribution of the sum of the degrees of those 

vertices by  mxG )(0 . 

We define outgoing edges from the first neighbors of a randomly chosen vertex as those 

connecting to vertices different from the first neighbors of the originally chosen vertex. It is 

first necessary to define the generating function for the distribution of the degree of the 

vertices one arrives at, along a randomly chosen edge. That vertex will be reached with 

probability proportional to its degree, kpk, so that the normalized distribution is generated by 
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Starting from a randomly chosen vertex and following each of its edges to arrive at the k 

nearest neighbors, each of the vertices arrived at will have outgoing edges that is given by the 

degree of that vertex less the edge that one arrives along and the backlinks, b. The latter are 

defined as the edges that interconnect the nearest neighbors of the original vertex. Thus, the 

generating function for the outgoing edges from each vertex is, 
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Note that b itself depends on k.  

The number of backlinks, b, is given in terms of the clustering coefficient, C, around a given 

node with degree k. Using the definition of C, with the number of interconnections, I,  
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between its first neighbors,  2/)1(/  kkIC , the average number of backlinks for each of 

the k neighboring nodes is, )1(/2  kCkIb . This will lead to the generating function for 

outgoing edges as:  
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The generating function for the distribution of all outgoing links from the k neighbors of the 

original node is then obtained from the powers property: 
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The average number of outgoing links is computed from the first moment of the generating 

function evaluated at x = 1. In general, this leads to 
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knn is the nearest neighbor correlations, defined as the total number of neighbors of a given 

node which emanates from a selected node of k neighbors. Thus, it is the sum of the number 

of outgoing links per neighbor, the backlinks per neighbor and the link that connects the 

original node to the first neighbor: 
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The first term in curly brackets is constant, carrying information on the moments of the 

distributions, depending on how C is related to k. The second term determines the assortative 

versus disassortative behavior of the network. For example, if C decreases with k as a single 

exponential, )exp( akC  , we may get assortative or disassortative mixing depending on the 

strength of the decay. For the cases of C → 0, one gets uncorrelated networks. On the other 

hand, for the particular case of a system where C is finite, yet independent of k, equation 13 

reduces to the simple linear expression: 
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with slope C and the intercept depending on the degree distribution. For example, for a 

Poisson distributed network, e.g. approximated by RN constructed from folded protein 

structures as was shown in [16,17], !/ kezp zk

k

 , the relation takes the form 

 )1)(1( CzCkknn    (15) 

In this work, we study concentrated atomic/molecular systems which have a weak dependence 

of clustering coefficient on degree. We shall see that the linear dependence of equation 14 

suffices to describe their nearest neighbor degree correlations.  

In passing, we note that an algorithm for generating networks with given clustering 

dependence on degree has been proposed [42]. However, the algorithm fixes the average 

clustering coefficient and has no control over the distribution of clustering for a given degree, 

while this distribution is crucial in our derivation. Moreover, to construct the desired network, 

the constraint for networks to be assortatively mixed is imposed.  

Statistical properties of close-packed atomic/molecular systems. The nearest neighbor 

degree correlations are displayed in figure 1 for the five systems studied. We find that all of 

them display assortative mixing. Furthermore, they are well-approximated by a linear 

relationship. In fact, one may use equation 14, which was obtained assuming that clustering is 

independent of degree, to predict the clustering coefficient (from the slope) and the ratio 

<k
2
>/z (from the intercept), to assess the range of validity of this assumption. In Table 1 is a 

comparative list of the predictions and the actual values calculated for the systems at hand. 

We find that the predictions overlap with the actual network values for all systems. Since the 

linear dependence, as well as the match between the predicted values of C and <k
2
>/z depend 

on C being independent of k (see the reduction of eq. 13 to obtain eq. 14), we further examine 

this property in conjunction with degree distributions (figure 2). For all the systems studied, 

there is a decreasing trend of C with k, although it is quite weak for RN, micellar networks 

(MN) and Lennard-Jones clusters (LJC). Taken together with the degree distributions, also 

displayed in Figure 2 with the gray shaded curves, the variation of C with k is even less 

significant in the regions within one-standard deviation of the average degree for these three 

systems. Below we discuss in detail the implication of these observations for the individual 

systems studied. 
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Self-organized molecular structures: Residue networks and micellar networks. Previous 

studies on RN showed that these networks have high clustering as opposed to their random 

counterparts and have comparable shortest path lengths as the random networks; therefore, 

they can be considered as having small-world topology [16,20,21,22]. In these studies, 

comparisons were performed for the average properties throughout the network between the 

RNs and their randomly rewired counterparts. Although average values do confirm that RNs 

have small-world properties, detailed analyses of the individual parameters are needed to 

assess similarity with artificially generated networks. 

In reference [16] it was shown that the degree distributions of RN are Poisson; the mean is 

6.2. Therein, it was also shown that the residues in the core have a mean clustering coefficient 

of ca. 1/3, whereas this value approaches 0.5 for the nodes that reside along the surface. 

Averaged over the set of 595 proteins, the clustering coefficient of RN has the value 0.38. The 

linearity between knn and k holds for all sizes of proteins, despite the size differences, in 

addition to the slight decreasing dependence of C with k. We adopt equation 15 to analyze the 

relationship between knn and k in RN and we find that the slope may be identified by the 

average clustering coefficient of the network. The values of <C> and z=<k
2
>/z calculated 

directly from the network and predicted via equation 14 are listed in Table 1. Within the error 

bounds, the predictions of theory are valid; the only slight deviation occurs as an 

underestimation of <C> for the smaller proteins where the surface effects (and the variance in 

C) are more pronounced. We shall later elaborate further on the surface effects. 

We expect other self-organized molecular structures to display network properties similar to 

the RN obtained from proteins, provided that they are thermodynamically stable and have a 

given average structure around which fluctuations are observed. Similar to the proteins, these 

structures follow certain organization rules due to the (in)compatibility of their chemical units 

with the solvent. Other environmental factors, such as the temperature or the concentration, 

play a role on the type of organization observed. As example systems, we choose micelles of 

different morphologies formed by the ABC type co-oligomers, whose coordinates are 

obtained from dissipative particle dynamics (DPD) simulations, as described in the Methods 

section. 

At low concentrations, these oligomers organize to form spherical micelles. As the 

concentration increases, adjacent spheres merge and attain a cylindrical morphology. Further 

increase in the concentration results in the formation of lamellae. As an inset to figure 3, we 
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display the spherical, cylindrical and the lamellar formations excerpted from oligomer 

concentrations of  = 0.3, 0.6, and 0.9, respectively. Note that it is the core region (i.e. the 

fluorinated regions shown as white spheres) that maintains the stable morphology, while the 

corona formed by the red and gray beads shows large fluctuations in conformation. Thus, we 

use the coordinates of the white blobs to generate the MN. The degree distribution and the 

dependence of clustering coefficient on degree of a sample network with  = 0.6 are shown in 

figure 2. It is important to note that, regardless of the type of self organization, these network 

parameters show the same pattern as RN. We approximate their degree by Poisson 

distribution. 

Similar to RN, analysis of k vs. knn relationship for MN reveals a positive linear correlation 

regardless of morphology (Figure 1). The values of <C> and z=<k
2
>/z calculated directly 

from the network and predicted via equation 15 are also listed in Table 1. Nodes with less 

than four and more than 15 connections are omitted due to lack of statistics of blobs with too 

few or too many neighbors. Theoretical predictions of z=<k
2
>/z from the intercept of the k vs. 

knn relation is in excellent agreement with the numerical results. The slope of the best-fitting 

line slightly overestimates the average clustering coefficient. 

The linear relationship between knn and k also predicts the increase in z with size in RN and 

the decrease in z with concentration (and morphology change) in MN. The theory slightly 

underestimates the clustering coefficient of RN whereas it overestimates that of MN. This is 

due to surface effects: In proteins, nodes along the surface have high clustering coefficients as 

shown in reference [16]. Because these nodes have few links that are interconnected, they 

increase the average clustering coefficient then would be directly predicted by an overall fit to 

the data in figure 1. Conversely, in MN surface nodes along the core are connected to the 

solvo-phillic arms of the chains. These connections, which are omitted in the calculations, 

since our network construction is based on only the core of the micelles and not the corona, 

have the reverse effect on the average value of the clustering coefficient.  

Effect of excluded volume: Lennard-Jones and HCP clusters. Atoms or groups of atoms 

occupy a specific volume in space, and as a result, there is an upper bound on the number of 

neighbors that may be within the direct interaction range of a given node. Since our nodes 

comprise of coarse-grained groups of atoms that are not arranged spherically symmetric, we 

observe number of neighbors as large as 19 for a few nodes. This is in contrast to the 

maximum coordination of 12 expected of regular lattices of spherical particles. All of the 
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networks studied here have this property of an upper bound on the degree. However, the 

extent to which this excluded volume effect influences the predictions of the previous 

subsections is unclear. To further investigate this point, we study LJC, which are clusters of 

atoms of minimum energy that interact purely via Lennard-Jones interactions. We confine our 

attention to those within the size range up to 550 particles which is compatible with the 

network sizes of RN and MN studied here. Although LJC conform to an icosahedral 

arrangement of atoms, they have incomplete cores (i.e. holes within the structure). We 

therefore also study hypothetical atomic clusters which have complete occupancy of HCP 

lattice sites.  

The degree distributions of these systems are jagged and cannot be described as Poisson 

(figure 2). We find a linear relationship between knn and k, as in the previous self-organized 

systems (figure 1). For LJC, the dependence of C on k is very similar to those of MN, 

following a nearly linear trend with a small negative slope (-0.02). For HCP, there is a 

stronger dependence of C on k, yet for degrees that are observed more frequently, the average 

clustering remains almost constant (C is 0.36 for k = 12 and 0.40 for k = 9). In both types of 

systems, while the <k
2
>/z values are well-predicted by equation 14, we find <C> to be 

consistently underestimated by the theory, more so for LJC than for HCP (Table 1). As 

discussed in the previous subsection for RN, this is again due to the surface effects, which is 

more prominent for the irregular surfaces of LJC.  

Effect of chain connectivity: Polybutadiene (PBD) Melts. Finally, we study polymeric melts to 

discern the additional effect of connectivity on the statistical properties of the networks. The 

linear relationship between knn and k is also observed for this system which is forced into a 

close-packed structure by applying very high pressure. Degree distribution deviates from 

Poisson as for LJC and HCP, while clustering behavior is similar to those obtained for HCP. 

Both <C> and <k
2
>/z are predicted via the theoretical fit (Table 1), with a slight 

overestimation of <C>. The overestimation is due to the fact that we truncate the system at the 

periodic boundaries of the cubic simulation box, and therefore the neighbors of some of the 

surface beads are artificially eliminated. Similar overestimation was also obtained for MN, 

where the corona neighbors of the core beads were removed. Thus, the effect of chain 

connectivity only plays a role in defining a correct neighborhood structure for the surface 

beads. 

Putting together these results, we conclude that the excluded volume leads to the assortative 
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mixing of the local structure, described by the positive slope of between knn and k curves. 

Furthermore, the extrapolation of the curves to low connectivity (k → 0) leads to an excellent 

prediction of the <k
2
>/z values, regardless of the type of system studied (figure 4). Additional 

constraints on the local organization of the beads would lead to further local structuring which 

is measurable by the slope of these curves converging to <C>. We find that chain connectivity 

alone does not bring about such local organization of the beads as observed for PBD system at 

moderate density (data not shown). However, systems attaining dense core structures do 

converge to this limit. Such close-packing may be attained by imposing external factors such 

as the high pressure on PBD; alternatively, the core regions of self-organized systems prefer 

to realize such an arrangement due to the free energetic requirements of arranging chains with 

both solvo-phobic and solvo-phillic regions in a solvent that creates the driving force for the 

formation of the densely packed core [43].  

Discussion 

This study is based on the premise that network structures are better classified by the 

distributions of their network parameters rather than the average values. One previous 

example has been with approximating residue networks derived from proteins with the regular 

ring lattice: Although it is relatively easy to generate a corresponding ring lattice with few 

random rewired links having the same average degree and clustering coefficient as the RN 

[16], neither the second degree correlations nor the global properties (e.g. average path 

length) are reproduced with this approach. However, comparison of distributions of the 

parameters involved is not straightforward. 

To make the problem tractable, we derive a relationship between knn and k for networks with 

arbitrary degree distributions, but with narrowly distributed finite clustering. This subset of 

constraints is relevant to the study of complex systems, because the results directly apply to 

the study of self-organized molecular structures which are characterized by Poisson degree 

distributions, and narrowly distributed clustering coefficients. In randomly-packed chain 

systems this relationship is expected to be lost, as is observed when the corona region of the 

micellar networks (i.e. the disorganized parts of the chains protruding into the solvent) is also 

included in the calculations (data not shown). We validate the derived linear relationship 

between knn and k on several model networks based on three dimensional regular structures, 

polymeric melts forced into close-packing by external pressure as well as those constructed 

from proteins and micelles of self-organizing co-oligomers.  
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Excluded volume and close-packing together control the plateau value of the clustering 

coefficient reached for nodes which are located in the core of the systems studied; i.e. those 

with high degree. Moreover, they impose a decreasing trend on C with increasing k, as well as 

providing restrictions on degree distributions. These constraints lead to assortative mixing in 

the graph structure. The presence of a single chain (as in RN), many chains (as in MN and 

PBD) or no chains (as in LJC and HCP) does not have an effect on these trends. 

The close packed structures emerge as model systems that approximate the network properties 

of self-organized molecular structures: They yield the local statistical averages and 

distributions similar to that of the self-assembled systems. Using these model networks as the 

basis, one may generate novel networks by introducing a few random links whereby the local 

properties are preserved while the desired global properties are approximated. The ultimate 

goal is to use both statistical and spectral characterization to design networks with desired 

properties and to determine the principles underlying organization of complex networks. 

Methods: Model Systems and Network Construction 

Self-organized molecular structures. In this subsection we describe how the networks are 

constructed for the two self-organized molecular structures studied in this work. 

Residue Networks: These networks are formed from experimentally determined protein 

structures obtained from the Protein Data Bank (PDB) [44]. For the RN calculations we 

utilize a set of 595 single-chain proteins with sizes between 54-1021 and having a sequence 

homology less than %25 [45]. This protein set is identical to the set we used in our previous 

studies [16,17] and is listed as a supplementary file in [17]. 

Given a protein, each amino-acid is represented by a node that is centered at the position of Cβ 

atoms, or the Cα atom in the case of Glycine. Edges are added between two nodes (i.e. Ai,j = 1 

in equation 1), if they are closer than a selected cutoff distance, rc. We call these constructions 

RN. We use rc=6.7Å as in our previous work, which is the distance where the first 

coordination shells ends, as computed from the radial distribution function (RDF) shown in 

figure 3. See references [16,17,46] for more details on the construction of residue networks 

and the choice of rc . 

Micellar Networks. Unlike proteins, there is no experimentally available atomistic structure 

data for self-organized synthetic molecules. We therefore generate such data using the coarse 

grained simulation methodology DPD.  In DPD, the equilibrium morphology of a group of 
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beads is obtained by integrating out the fast motion of atoms. In addition to the random and 

dissipative forces, the net forces on the beads are soft and repulsive conservative forces. The 

simulation is carried out by integrating Newton’s law of motion. DPD simulations allow 

reaching long time scales for macromolecular systems. Thus, morphologies of self-organized 

systems of large sizes can be studied. Here, we simulate the micelle formation by ABC type 

oligomers of styrene-co-perfluoroalkylethylacrylate in tetrahydrofuran (F beads). The co-

oligomer consists of ten styrene monomers (A beads), seven perfluoroheptane monomers (C 

beads) and a linker monomer (B bead). The styrene monomers in the co-oligomer have a 

tendency to interact with the solvent, whereas the fluorinated parts prefer to segregate, thus 

resulting in micelle formation. The equilibrium morphology depends on the concentration of 

oligomer in the solution [47]. Force on bead i is given by  
 k

conn

ij

R

ij

D

ij

C

ijiji FFFFf )( , 

where the respective forces are due to interaction, dissipative and random forces between 

beads i and j, and chain connectivity between bead i, its neighbors k along the chain contour. 

A general overview of the DPD method and parameterization details for this particular system 

is given in [48]. 

We report results from systems where the volume fraction, , of the oligomers is 0.3, 0.6 and 

0.9, respectively. We find that at these concentrations, the triblock co-oligomers self-organize 

into spherical, cylindrical and lamellar morphologies respectively, as the concentration is 

increased. Once the organized structures are obtained, we focus on one substructure from the 

simulated system; e.g. the set of oligomers that form a complete sphere are taken as the 

structure whose network will be formed. Thus, the spherical structure is made up of 50 chains, 

the cylindrical structure has 100 chains, and the lamellar structure has 150 chains. In each 

sample structure, we concentrate on the fluorinated segments, which have self-organized due 

to the driving forces inherent to the system beads. By computing the RDFs around these 

beads, we find that the first coordination shell ends at 1.1 DPD units (see figure 3). We use 

this cutoff distance to form the network (equation 1) whose properties are studied. Chain 

connectivity of a copolymer is preserved regardless of the particle separation; i.e. (i, i+1) 

connections are always present. Also shown as an inset to figure 3 are sample configurations 

of spherical, cylindrical and lamellar formations excerpted from oligomer concentrations of  

= 0.3, 0.6, and 0.9, respectively. 

Other atomic/molecular structures. We also study other densely packed systems of 

atomic/molecular origin, to investigate the effects of excluded volume and chain connectivity 
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on the observed statistical properties. To this end, we focus on the structure of networks 

obtained from Lennard-Jones clusters and clusters imposed on HCP lattices (to test influence 

of excluded volume on the results) as well as polybutadiene melts (to test the combined effect 

of excluded volume and chain connectivity). The network data are obtained as described 

below. 

Lennard-Jones Clusters. The structure of clusters of atoms is an area of intense scientific 

research, since the properties of materials become size dependent when systems are small 

enough. By clusters, we refer to groups of atoms from tens to thousands of atoms. LJC are a 

group of atoms that contain purely Lennard-Jones interactions between pairs of atoms. 

Geometric optimization of these clusters requires developing efficient search algorithms, 

since the conformational space available to a cluster of atoms increases explosively. The 

atomic coordinates of LJC for sizes 3-1000 are deposited on the Cambridge Cluster Database 

[49]. Many of them are described by icosahedral motifs with an incomplete core [50]. Here 

we examine clusters of sizes 350 – 550, in intervals of 50 atoms. The cutoff distance for 

adjacency matrix construction is 1.6 Å [51]; see figure 3 for the RDF. 

Hexagonal Close Packed lattice based atomic clusters: We pack a set of N-atoms (nodes) on 

the lattice sites so that we have a finite system that has all lattice sites filled, unlike LJC that 

have incomplete cores. We emphasize that, we have studied the properties of simple cubic, 

body-centered cubic, face-centered cubic and HCP arrangements, although here we present 

representative data from the latter only, as all these systems lead to similar conclusions. In the 

HCP structure, nodes are arranged on a plane in a hexagonal formation, and planes are 

stacked on top of each other with alternating order. Although we display the RDF of this 

system in figure 3, we do not choose a cutoff distance where the first coordination shell ends, 

but we rather connect the first nearest neighbors to obtain the network; the fixed cutoff value 

is marked on the figure with the vertical dashed line. The generating function (equation 5) for 

N = 500 sites is 
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.  

Polybutadiene Melts. We investigate networks constructed from PBD melts that have been 

obtained from molecular dynamics (MD) simulations. The system consists of monodisperse 

cis-1,4-PB of 32-chains, each with 32 repeat units (C128). The initial coordinates of the system 

studied was prepared in Amorphous Construction Module of the Accelerys Material Studio 
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4.4 [52] at a density of 0.92 gr/cm
3
, which occupies a cubic box of  47 Å on each side. 

Minimization, pre-equilibration and integration of the equations of motions were done with 

the NAMD program [53]. The interaction potentials for PBD chains reported in [54] are 

adopted. For all simulations, 1 fs integration time step was used. Temperature and pressure 

were maintained constant in the MD simulations at their prescribed values by employing the 

Langevin thermostat-barostat.  For the non-bonding interaction cut-off distance of 10 Å was 

used with a switching function turned-on at 8 Å. 

To obtain well-equilibrated samples of PBD chains with correct chain statistics, the initial 

structure which is energy minimized for 10000 steps is depressurized by placing the chains 

into a larger cubic box of 300 Å on each side. NVT simulations of this low-density system is 

carried out for 10 ns at 430 K. We then cool the system to 300 K by equilibrating for an 

additional 20 ns. Consequently, we compress it with NPT simulations at 1 atm at 430 K for 1 

ns. We check that the conformational properties (as measured by the characteristic ratio) and 

the thermodynamic measurable (e.g. thermal expansion coefficient and compressibility) are 

compatible with the values in reference [54]. The data used in the current calculations are 

finally obtained from highly pressurized PBD melts via NPT simulations at 100 GPa and 430 

K. We collect data for 50 ns. PBD melts are coarse grained by using the coordinates for the 

center of mass of carbon atoms in the butadiene repeat units. RDFs are obtained as usual, and 

cutoff distance for network construction is chosen at 5 Å, the ending point of the first 

coordination shell (figure 3). 
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Figure Captions: 

 

Figure 1. Averaged knn vs. k plots for RN with N = 190-210 (29 proteins), MN with  = 0.60 (cylindrical micelle 

is formed in the core), LJC (N = 500), HCP (N = 500), and PBD systems. Using equation 14, the values for C 

and z are predicted and compared with the actual values of the network in Table 1.  For RN, nodes with degree 1, 

13, 14 and 15 are omitted since there is relatively small number of nodes with such degrees (< 25) to provide 

meaningful statistics. Similarly, for MN, nodes with degree less than 5 and greater than 15 are omitted to provide 

meaningful statistics. 

 

Figure 2. Averaged clustering vs. degree plots for RN (N = 190-210), MN ( = 0.60), LJC (N = 500), HCP (N = 

500), and PBD on the left y-axis. Degree distributions are superposed (shaded) and labeled on the right y-axis. 

 

Figure 3. Radial distribution function g(r) calculated for sample systems in the current work. Distance r is in Å 

for RN, PBD and LJC structures, and is in reduced units (bead size = 1 unit) for the other cases. The cutoff 

distances, rc, utilized for network construction are also marked on the figures. An example network construction 

is displayed for the residue network (RN) of the sample protein (PDB code 1esl) as an inset; protein structure in 

ribbon diagram is on the left, the constructed network at the rc value selected for all residue networks is on the 

right. Also shown as inset are the MN structures formed at various concentrations ( = 0.30, spherical;  = 0.60 

cylindrical; = 0.90, lamellar). 

 

Figure 4. Comparison of predicted versus calculated values of the ratio of second to first moments of the degree 

distributions, <k2>/z. 
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Table 1. Network parameters <C> and <k2
>/z computed from the generated graphs and predicted from 

the least squares linear fit to knn vs. k curves. 

 
 

  Calculated Predicted
c
 

  <C> <k
2
>/z <C> <k

2
>/z 

Residue 
Networks

a
 

595 Proteins; <N> = 254 0.38 6.2 0.35±0.01 5.8±0.2 

 N = 140-160 0.38 6.1 0.32±0.01 5.7±0.2 

 N = 190-210 0.39 6.2 0.32±0.02 5.8±0.4 

 N = 290-310 0.37 6.6 0.36±0.01 6.2±0.2 

Micellar 

Networks
a
 

= 0.3 0.45 10.3 0.40±0.02 10.5±0.8 

 = 0.6 0.43 9.9 0.51±0.02 10.2±0.8 

 = 0.9 0.41 9.4 0.51±0.02 9.6±0.6 

Lennard-

Jones 

Clusters
b
 

= 350 0.47 15.1 0.33±0.07 14.4±1.4 

 = 400 0.47 15.3 0.31±0.06 14.5±1.1 

 = 450 0.46 15.4 0.33±0.07 14.6±1.3 

 = 500 0.46 15.5 0.33±0.07 14.6±1.4 

 = 550 0.47 15.6 0.37±0.12 15.3±2.6 

HCP
b
 = 500 0.41 10.2 0.38±0.06 9.9±0.8 

PBD
b
 T = 430 K, P = 100 GPa 0.45 12.8 0.52±0.03 12.4±0.7 

a Degree distribution is well-described by Poisson; therefore predictions by eq. 14 and 15 lead to the same result. 

z = < k > = <k
2
>/z for these systems. 

b Degree distributions are not well-described by Poisson. Predictions are made through eq. 14. 
c Error margins on the predicted values are reported. 
  

 

 

 

 


