58 research outputs found

    An analysis on decentralized adaptive MAC protocols for Cognitive Radio networks

    Get PDF
    The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the Cognitive Radio (CR) Technology which is an opportunistic network that senses the environment, observes the network changes, and then using knowledge gained from the prior interaction with the network, makes intelligent decisions by dynamically adapting their transmission characteristics. In this paper some of the decentralized adaptive MAC protocols for CR networks have been critically analyzed and a novel adaptive MAC protocol for CR networks, DNG-MAC which is decentralized and non-global in nature, has been proposed. The results show the DNG-MAC out performs other CR MAC protocols in terms of time and energy efficiency

    3D Fiber Orientation in Atherosclerotic Carotid Plaques

    Get PDF
    Atherosclerotic plaque rupture is the primary trigger of fatal cardiovascular events. Fibrillar collagen in atherosclerotic plaques and their directionality are anticipated to play a crucial role in plaque rupture. This study aimed assessing 3D fiber orientations and architecture in atherosclerotic plaques for the first time.Seven carotid plaques were imaged ex-vivo with a state-of-the-art Diffusion Tensor Imaging (DTI) technique, using a high magnetic field (9.4. Tesla) MRI scanner. A 3D spin-echo sequence with uni-polar diffusion sensitizing pulsed field gradients was utilized for DTI and fiber directions were assessed from diffusion tensor measurements. The distribution of the 3D fiber orientations in atherosclerotic plaques were quantified and the principal fiber orientations (circumferential, longitudinal or radial) were determined.Overall, 52% of the fiber orientations in the carotid plaque specimens were closest to the circumferential direction, 34% to the longitudinal direction, and 14% to the radial direction. Statistically no significant difference was measured in the amount of the fiber orientations between the concentric and eccentric plaque sites. However, concentric plaque sites showed a distinct structural organization, where the principally longitudinally oriented fibers were closer to the luminal side and the principally circumferentially oriented fibers were located more abluminally. The acquired unique information on 3D plaque fiber direction will help understanding pathobiological mechanisms of atherosclerotic plaque progression and pave the road to more realistic biomechanical plaque modeling for rupture assessment

    Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues

    Get PDF
    Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5–80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress–strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress–strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors

    Mechanical wall stress and wall shear stress are associated with atherosclerosis development in non-calcified coronary segments

    Get PDF
    Background and aims: Atherosclerotic plaque onset and progression are known to be affected by local biomechanical factors. While the role of wall shear stress (WSS) has been studied, the impact of another biomechanical factor, namely mechanical wall stress (MWS), remains poorly understood. In this study, we investigated the association of MWS, independently and combined with WSS, towards atherosclerosis in coronary arteries. Methods: Thirty-four human coronary arteries were analyzed using near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) and optical coherence tomography (OCT) at baseline and after 12 months. Baseline WSS and MWS were calculated using computational models, and wall thickness (ΔWT) and lipid-rich necrotic core size (ΔLRNC) change were measured in non-calcified coronary segments. The arteries were further divided into 1.5 mm/45° sectors and categorized as plaque-free or plaque sectors. For each category, associations between biomechanical factors (WSS &amp; MWS) and changes in coronary wall (ΔWT &amp; ΔLRNC) were studied using linear mixed models. Results: In plaque-free sectors, higher MWS (p &lt; 0.001) was associated with greater vessel wall growth. Plaque sectors demonstrated wall thickness reduction over time, likely due to medical therapy, where higher levels of WSS and WMS, individually and combined, (p &lt; 0.05) were associated with a greater reduction. Sectors with low MWS combined with high WSS demonstrated the highest LRNC increase (p &lt; 0.01). Conclusions:In this study, we investigated the association of the (largely-overlooked) biomechanical factor MWS with coronary atherosclerosis, individually and combined with WSS. Our results demonstrated that both MWS and WSS significantly correlate with atherosclerotic plaque initiation and development.</p

    In vitro and in silico modeling of endovascular stroke treatments for acute ischemic stroke

    No full text
    Acute ischemic stroke occurs when a thrombus obstructs a cerebral artery, leading to sub-optimal blood perfusion to brain tissue. A recently developed, preventive treatment is the endovascular stroke treatment (EVT), which is a minimally invasive procedure, involving the use of stent-retrievers and/or aspiration catheters. Despite its increasing use, many critical factors of EVT are not well understood. In this respect, in vitro, and in silico studies have the great potential to help us deepen our understanding of the procedure, perform further device and procedural optimization, and help in clinical training. This review paper provides an overview of the previous in vitro and in silico evaluations of EVT treatments, with a special emphasis on the four main aspects of the adopted experimental and numerical set-ups: vessel, thrombus, device, and procedural settings

    A tissue-engineered model of the atherosclerotic plaque cap: Toward understanding the role of microcalcifications in plaque rupture

    Get PDF
    Rupture of the cap of an atherosclerotic plaque can lead to thrombotic cardiovascular events. It has been suggested, through computational models, that the presence of microcalcifications in the atherosclerotic cap can increase the risk of cap rupture. However, the experimental confirmation of this hypothesis is still lacking. In this study, we have developed a novel tissue-engineered model to mimic the atherosclerotic fibrous cap with microcalcifications and assess the impact of microcalcifications on cap mechanics. First, human carotid plaque caps were analyzed to determine the distribution, size, and density of microcalcifications in real cap tissue. Hydroxyapatite particles with features similar to real cap microcalcifications were used as microcalcification mimics. Injected clusters of hydroxyapatite particles were embedded in a fibrin gel seeded with human myofibroblasts which deposited a native-like collagenous matrix around the particles, during the 21-day culture period. Second harmonic multiphoton microscopy imaging revealed higher local collagen fiber dispersion in regions of hydroxyapatite clusters. Tissue-engineered caps with hydroxyapatite particles demonstrated lower stiffness and ultimate tensile stress than the control group samples under uniaxial tensile loading, suggesting increased rupture risk in atherosclerotic plaques with microcalcifications. This model supports previous computational findings regarding a detrimental role for microcalcifications in cap rupture risk and can further be deployed to elucidate tissue mechanics in pathologies with calcifying soft tissues
    • …
    corecore