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A B S T R A C T

Atherosclerotic plaque rupture is the primary trigger of fatal cardiovascular events. Fibrillar collagen in
atherosclerotic plaques and their directionality are anticipated to play a crucial role in plaque rupture. This study
aimed assessing 3D fiber orientations and architecture in atherosclerotic plaques for the first time.

Seven carotid plaques were imaged ex-vivo with a state-of-the-art Diffusion Tensor Imaging (DTI) technique,
using a high magnetic field (9.4 Tesla) MRI scanner. A 3D spin-echo sequence with uni-polar diffusion sensitizing
pulsed field gradients was utilized for DTI and fiber directions were assessed from diffusion tensor measure-
ments. The distribution of the 3D fiber orientations in atherosclerotic plaques were quantified and the principal
fiber orientations (circumferential, longitudinal or radial) were determined.

Overall, 52% of the fiber orientations in the carotid plaque specimens were closest to the circumferential
direction, 34% to the longitudinal direction, and 14% to the radial direction. Statistically no significant dif-
ference was measured in the amount of the fiber orientations between the concentric and eccentric plaque sites.
However, concentric plaque sites showed a distinct structural organization, where the principally longitudinally
oriented fibers were closer to the luminal side and the principally circumferentially oriented fibers were located
more abluminally. The acquired unique information on 3D plaque fiber direction will help understanding pa-
thobiological mechanisms of atherosclerotic plaque progression and pave the road to more realistic bio-
mechanical plaque modeling for rupture assessment.

1. Introduction

Atherosclerotic plaque rupture in carotid arteries is strongly asso-
ciated with cerebrovascular events (Carr et al., 1996). However, there
are no reliable means to assess the rupture risk of atherosclerotic pla-
ques. Hence, in the current clinical practice carotid plaque rupture risk
is not taken into account when planning preventive treatment strate-
gies. Biomechanical plaque stress analyses have the potential for as-
sessing plaque rupture risk (Cheng et al., 1993; Richardson et al., 1989;
Teng et al., 2014). The mechanical stresses in atherosclerotic plaques
can be determined with finite element (FE) modeling techniques
(Akyildiz et al., 2015; Nieuwstadt et al., 2013). A critical factor to
obtain accurate stress results from FE models is the correct re-
presentation of the mechanical behavior of the plaque components in
the models (Akyildiz et al., 2011; Teng et al., 2015).

The macroscopic mechanical behavior of biological tissues is gov-
erned by their microstructural composition. It is well established that in

healthy arteries, collagen fibers are one of the main load bearing mi-
crostructures and their organization is a significant determinant of the
arterial anisotropic mechanical behavior (Fratzl, 2008; Holzapfel et al.,
2002; Humphrey, 2002). The vascular collagen comprises up to 50% of
the dry weight and exists in all three layers of the healthy vessel wall
(Bartoš and Ledvina, 1979; Hosoda et al., 1984; Mayne, 1986). In the
innermost, thin tunica intima, collagen fibers show dispersed orienta-
tion and form a network underlying the endothelial cells to provide a
physical support base (Canham et al., 1989; Finlay et al., 1995). In the
tunica media, the collagen fibers are organized in a helical structure
around the artery circumference (Clark and Glagov, 1985; Shadwick,
1999; Walker-Caprioglio et al., 1991). In tunica adventitia, the dis-
persedly oriented fibers show a wavy pattern at low intraluminal
pressure and straighten with increasing pressure to protect the tissue
from a potential acute overstretching (Canham et al., 1989; Finlay
et al., 1995). A comprehensive review of the collagen architecture and
its mechanical role in healthy arteries can be found in (Chen and
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Kassab, 2016; Holzapfel, 2008).
Fibrillar collagen is also abundantly present in atherosclerotic pla-

ques (Rekhter et al., 1993) and as such, its organization is highly likely
to be a key determinant of the mechanical behavior of the plaque
material (Chai et al., 2015). During atherogenesis smooth muscle cells
(SMCs) transmigrate from the tunica media into the tunica intima,
leading to intimal hyperplasia, and transform from the contractile to
the synthetic phenotype (Barnes and Farndale, 1999). The synthetic
SMCs are responsible for collagen synthesis in the atherosclerotic pla-
ques (Newby and Zaltsman, 1999). The presence and types of collagen
in atherosclerotic arteries have been studied widely (Murata et al.,
1986; Nadkarni et al., 2007; Pickering et al., 1996; Reimann et al.,
2016). However data on collagen orientation and architecture is rela-
tively scarce and provides only 2D information as it is mainly obtained
from histological examinations (Deguchi et al., 2005; Orekhov et al.,
1987; Shekhonin et al., 1985). Hence, there is a strong need for qua-
litative and quantitative data on the 3D collagen architecture in
atherosclerotic plaques.

Diffusion Tensor Imaging (DTI) is a non-invasive magnetic re-
sonance imaging (MRI) technique, which is a powerful tool for asses-
sing the 3D orientation of the microstructures in biological tissues such
as axons and fibers. DTI measures the self-diffusion of the water mo-
lecules in the tissue. In tissue with an isotropic microstructure, the
measured diffusion constant is identical in every 3D direction, in which
case the diffusion is referred to as isotropic (Basser and Pierpaoli,
1996). In directionally organized tissues, such as brain white matter or
muscle, the structural organization of the tissue introduces directional
anisotropy in the diffusion process, in which case the diffusion is re-
ferred to as anisotropic. Thus, a DTI measurement of the diffusion an-
isotropy provides information on the underlying tissue architecture.
DTI has been frequently used in neural network imaging in brain (Mori
and Zhang, 2006; Mori et al., 2007; Mukherjee et al., 2008) and fiber
imaging in heart (Buckberg et al., 2006; Strijkers et al., 2009), skeletal
muscle (Heemskerk et al., 2009; Lansdown et al., 2007) and cartilage
(Filidoro et al., 2005; Pierce et al., 2010). The technique has recently
been applied for fiber imaging in healthy arteries (Ghazanfari et al.,
2012; Flamini et al., 2015, 2010, 2013).

The current study aimed to assess the 3D fiber orientation and ar-
chitecture in atherosclerotic carotid plaques with a state-of-the-art DTI
technique. Ultimately, this knowledge will provide the essential in-
formation for accurate mechanical characterization of carotid plaques
in biomechanical models for plaque rupture risk assessment.

2. Materials and methods

2.1. Carotid plaque samples and DTI measurements

Carotid endarterectomy specimens from seven patients (all male,
age 55–80 years), with a stenosis> 70%, were imaged in the study. The
study protocol was approved by the Medical Ethics Committee of the
Erasmus Medical Center and conformed to the ethical guidelines of the
1975 Declaration of Helsinki. This included written informed consents
from the patients. Following the endarterectomy, the plaque samples
were snap-frozen and stored in a freezer at −80 °C until the day of the
DTI measurements. Before imaging, the samples were thawed at room
temperature and embedded in 4% agarose type VII in a cryovial, fol-
lowing a protocol described previously in detail (Ghazanfari et al.,
2012), to prevent tissue degradation due to contact with air.

DTI was performed with a 9.4 T horizontal bore MRI scanner
(Bruker, Ettlingen, Germany) using a dedicated 35-mm diameter send-
receive quadrature birdcage radiofrequency coil. A 3D spin-echo DTI
sequence with uni-polar diffusion sensitizing pulsed field gradients,
placed symmetrically around the 180° radiofrequency pulse, was used.
Sequence parameters were as follows: echo time = 27 ms, repetition
time = 1000 ms, number of averages = 1, field of view = between
30 × 30 × 30 mm3 and 30 × 30 × 60 mm3, depending on the carotid

specimen length, acquisition matrix = 96 × 96 × 256, reconstruction
matrix = 256 × 256 × 256, 10 diffusion directions with diffusion
weighting b-value = 1500 s/mm2, 1 image without diffusion weighting
(b-value = 0).

The careful choice of the settings mentioned above are based on the
reasoning as follows: In DTI, the self-diffusion (Brownian motion) of
water molecules are probed in a typical timescale of ∼10 ms which
translates into a diffusion distance of< 5 µm, that is much smaller than
the average DTI voxel dimension (in the order of 100 µm). This ensures
that the measured apparent diffusion constant and its directional ani-
sotropy are independent on the voxel size and shape, provided the fiber
orientation within a voxel is roughly uniform. Moreover, application of
diffusion gradients in 10 directions, uniformly distributed over a sphere
and independent of voxel shape, prevents a directional bias. Although
only 6 orthogonal diffusion-weighted acquisitions (+1 non-weighted
image) is sufficient for estimation of the diffusion tensor, to prevent
bias in fiber-orientation estimates it is better to use more gradient di-
rections according to an optimized scheme (using a repulsive forces
algorithm). However, the error in diffusion estimates is essentially in-
dependent on the number of diffusion directions for number of direc-
tions larger than 10 (Froeling et al., 2013). Typical apparent diffusion
constant in fibrotic tissue at room temperature is in the range of
0.0008–0.0012 mm2/s. Hence, the chosen b-value of 1500 s/mm2 en-
sured that the signal intensities in the diffusion weighted images are in
the order of 20–30% of the unweighted images. This provides a signal-
to-noise ratio for the diffusion weighted images that are still sufficiently
high to prevent a noise bias, and at the same time a sufficiently atte-
nuated signal revealing the diffusion anisotropy. The chosen time of
repetition (TR) is a compromise to limit the total acquisition time. It
was previously shown that TR = 1000 ms provides sufficient accuracy
in cardiovascular tissue (Ghazanfari et al., 2015). In the end, the total
acquisition time per sample was approximately 28 h. Furthermore, for
DTI one should strive for isotropic or close-to-isotropic voxel dimen-
sions to prevent differential averaging of fiber orientations (Oouchi
et al., 2007). In this study, DTI acquisitions were performed with the
above-mentioned field of view size and matrix size to achieve close-to-
isotropic voxels, and based on previous work (Ghazanfari et al., 2012;
Savadjiev et al., 2012; Strijkers et al., 2009), the anisotropy is antici-
pated to have a negligible effect on the current DTI measurements.

2.2. Assessment of fiber directions and architecture

For qualitative assessment of the fiber orientation and architecture,
fiber tractography was performed on the DTI data first, using the open
source DTI data visualization tool vIST/e (Vilanova et al., 2006). For
quantitative assessment, the raw DTI data was transferred into the
MATLAB environment (version 8.1, The MathWorks Inc., Natick, MA)
via in-house developed MATLAB scripts. The obtained MRI data did not
only contain DTI data (more specifically diffusion tensors, one per
voxel) but also T2-weighted images of the plaque from the acquisition
with b-value = 0. The lumen and the outer plaque border contours
were drawn on the transversal T2-weighted images of the plaques to
delineate the plaque area and create a mask for the rest. To down-
sample the acquired DTI data to a data set with sufficiently detailed
information, every 8th transversal image in the longitudinal plaque
direction was selected for further analyses. Depending on the length of
the plaque sample, the selection resulted in 10 to 18 cross-sections per
plaque and 85 cross-sections in total. For each voxel from the plaque
tissue, the first eigenvector of the diffusion tensor from the voxel was
calculated and used as the measure for the predominant fiber direction
in the plaque material in the voxel. The predominant fiber direction
data was later transformed from the 3D global Cartesian coordinate
system into the local cylindrical system to determine the radial, cir-
cumferential and longitudinal components (Fig. 1).

The elevation and azimuthal angles of the predominant fiber di-
rections were calculated (Fig. 1). The elevation angle was defined as the
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angle between the fiber direction and the transversal cross-sectional
plane (range = [0–90°], 0° = on the transversal plane and 90° = in the
longitudinal direction of the vessel). The azimuthal angle was defined
as the angle between the projection of the fiber direction on the
transversal plane and the radial direction of the local cylindrical co-
ordinate system (range = [0–360°], 0° & 180° = radial direction,
90° & 270° = circumferential direction). A quantitative analysis was
performed to identify to which principal cylindrical direction (radial,
circumferential or longitudinal) each predominant fiber orientation was
closest. An elevation angle larger than 45° presented a principal long-
itudinal orientation. In case of an elevation angle smaller than 45°, the
principal orientation was defined as circumferential if the azimuthal
angle was between 45° and 135°, and as radial otherwise. For further
quantitative analysis, the relative amount of the predominant fiber di-
rections was assessed with respect to the elevation and azimuthal an-
gles. The data was analyzed for geometrically concentric and eccentric
cross-sections separately. A cross-section was classified as concentric if
the eccentricity index, defined as the ratio of the maximum to the
minimum plaque thickness in the cross-section, was smaller than 1.5
and as eccentric if otherwise (Li et al., 2010; Ohara et al., 2008).

3. Results

3.1. Fiber architecture in a representative plaque sample

A color-coded tractography image of one of the plaques is shown in
the left panel of Fig. 2 (min length of fiber tracked = 5 mm, max fiber
angle per step = 45°, seed distance = 1 mm). The fibrillar structures in
the image represent the predominant fiber directions and each one of
the red, blue and green colors represents an axis-direction (x-,y-, or z-

direction) of the 3D Cartesian coordinate system. The dominance of the
green color in the image illustrates that the predominant fiber or-
ientations in the region viewed were majorly closest to the longitudinal
direction. The right panel in Fig. 2 (middle panel) demonstrates the
principal orientation of the predominant fiber directions in four se-
lected cross-sections from the plaque. The longitudinal and circumfer-
ential principal orientations prevail in the cross-sections whereas the
radial orientation is minimal. The elevation and azimuthal angle his-
tograms (Fig. 2, right panel) demonstrate the variance in fiber or-
ientation among cross-sections.

In total, 11 transversal cross-sections (four concentric and seven
eccentric) were obtained from this plaque. The quantitative analysis on
these cross-sections demonstrated that, on average, 48% of the pre-
dominant fiber orientations were closest to the circumferential direc-
tion, 45% to the longitudinal direction and the rest (6%) to the radial
direction. The predominant fiber orientations in eccentric cross-sections
had mainly elevation angles lower than 60° (Fig. 3, upper panel, left).
The concentric cross-sections showed an elevation angle distribution
with two discernable peaks: one at 0° and another one around 70°
(Fig. 3, upper panel, right). For the azimuthal angle, both eccentric and
concentric cross-sections had similar distributions, with two peaks, one
around 90° and another one around 270° (Fig. 3, lower panel), in-
dicating that the transversal-plane component of the fibers was majorly
in the circumferential direction.

3.2. The general picture of the fiber architecture in carotid plaques

3D fiber orientations in 85 transversal cross-sections from the seven
carotid plaques were analyzed to assess the fiber architecture in the
carotid plaques. Twenty-three cross-sections were geometrically

Fig. 1. Cylindrical coordinate system, and the elevation and
azimuthal angles were used for the quantitative analysis of
the DTI data for the predominant fiber orientations.

Fig. 2. Color-coded tractography image of a carotid plaque
sample (left panel) and principal predominant fiber or-
ientations in four selected transversal cross-sections (mid
panel), together with elevation and azimuthal angle histo-
grams (right panel). The setting used for the illustrative
tractography image is as follows: min length of fiber
tracked = 5 mm, max fiber angle per step = 45 °, seed
distance = 1 mm. The bin size in the histograms is 5°.
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concentric and the others (n = 62) were eccentric. The median cross-
sectional plaque area was 41 mm2, where the concentric cross-sections
showed statistically significantly smaller plaque area than the eccentric
ones (median plaque area of 29.2 mm2 vs. 48.5 mm2, p < 0.001 in
Wilcoxon rank sum test).

All 85 cross-sections combined, 52% of the predominant fiber or-
ientations were closest to the circumferential direction (standard de-
viation (SD) = 4%), 34% to the longitudinal direction (SD = 7%), and
14% to the radial direction (SD = 5%), on average per plaque. The
presence of such large amount of fibers with predominant longitudinal
orientation was confirmed by further evidence collected from histology
performed on a longitudinal slice of one the tested carotid plaque
samples (Fig. 4). Histology was performed by using Resorcin Fuchsin
stain for fiber visualization. With this stain elastin fibers are dyed in
dark purple, collagen fibers in red pink and the cytoplasm in yellow.

Visual inspection of the acquired histology image confirmed the pre-
sence of longitudinally aligned collagen fibers. For an objective con-
firmation, fiber orientations in a subregion on the slice (zoom-in area in
Fig. 4) were evaluated by using image processing tools available in
MATLAB (“Canny edge detection” and “Watershed” algorithms as de-
scribed previously (Douglas et al., 2017)). Fibers in this juxtaluminal
plaque area showed a predominant longitudinal orientation, demon-
strated by the histogram in the lower panel of the figure, where an
angle of 90° corresponds to the longitudinal direction. Here, it should
be noted that histology is restricted to the cutting plane of the cross-
section and cannot provide structural information in the third, out-of-
plane dimension. Hence, a longitudial histology slice provides in-
formation about the longitudinal and radial components of fiber di-
rections only.

There was no statistically significant difference in the relative

Fig. 3. Relative distribution of the elevation angle (upper
panel) and azimuthal angle (lower panel) of the pre-
dominant fiber orientations in eccentric (n = 7, left) and
concentric cross-sections (n = 4, right) of a carotid plaque
sample. The bin size in the histograms is 5°.

Fig. 4. Histology image of a longitudinal plaque cross-sec-
tion, stained with Resorcin Fuchsin for visualizing fibers
(top panel). Elastin fibers have dark purple color, collagen
fibers red pink and the cytoplasm is yellow. The pre-
dominant longitudinal orientation of the fibers in some re-
gions, such as the close-up region (middle panel), is dis-
cernable. For illustrative purposes, the fibers of this
juxtaluminal region were identified from the histology
image, using “Canny edge detection” and “Watershed” al-
gorithms in MATLAB (version 8.1) as previously described
(Douglas et al., 2017). The majority of the fibers were
quantified to have a predominant longitudinal orientation
(bar graph in the lower panel, 0° = radial and 90° = long-
itudinal).
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amount of the principal fiber alignments between the concentric and
eccentric plaque areas. However, visual inspection and quantitative
analysis demonstrated a clear difference with respect to the location.
For a visual illustration, the reader is referred to the difference between
the fiber alignments in the concentric cross-section (top cross-section)
and the eccentric ones (the other three cross-sections) in the middle
panel of Fig. 2. In concentric cross-sections, the predominant fiber or-
ientations with a principal alignment in the longitudinal direction were
located more juxtaluminally (median relative radius = 0.43, with the
relative radius ranging from 0 [lumen] to 1 [outer plaque border] by
definition), compared to the ones with principal alignment in the cir-
cumferential direction (median relative radius = 0.56). The non-para-
metric Wilcoxon rank sum test showed that the difference was statis-
tically significant (p < 0.001). The relative amount of the fibers with
principal longitudinal alignment was up to 70% in the juxtaluminal
regions (Fig. 5, left panel) and gradually reduced to ∼20% in the
outward radial direction, where the balance tipped off towards prin-
cipal circumferential orientation. Eccentric cross-sections did not show
a distinctive structural organization of longitudinally and circumfer-
entially oriented fibers (median relative radius = 0.48 vs 0.49). In ec-
centric plaques the amount of the principal fiber orientations (long-
itudinal, circumferential and radial) did not depend on the radial
position (Fig. 5, right panel).

Fig. 6 demonstrates the elevation and azimuthal angle distributions
combined to depict the predominant fiber directions in 3D for eccentric
(upper panel) and concentric cross-sections (lower panel). The histo-
grams for the elevation angle only and for azimuthal angle only are also
provided in the graphs. Irrespective of the shape of the cross-sections
(eccentric or concentric), two peaks in the 3D distribution maps were
discernable: one at an azimuthal angle of 90° and another one at 270°,
both with an elevation angle of 0°. This indicated that most fibers had
mainly circumferential orientation with a small elevation from the
transversal plane. These peaks were higher for the concentric cross-
sections.

The histogram of the azimuthal angle for the eccentric cross-sec-
tions (Fig. 6, upper panel, azimuthal angle-only histogram) illustrates
that 33% of the predominant fiber orientations had an azimuthal angle
between 45° and 135° and 40% had an angle between 225° and 315°.
For concentric cross-sections (Fig. 6, lower panel, azimuthal angle-only
histogram), the values were 35% and 46%, respectively. Moreover, in
the concentric cross-sections the peaks in the azimuthal angle dis-
tribution were higher. The total relative amount of the predominant
fiber orientations with the azimuthal angles 90° ± 22.5° and
270° ± 22.5° was 57% for the concentric cross-sections, whereas the
value was 45% for the eccentric ones.

The histogram for the elevation angle in the eccentric cross-sections
(Fig. 6, upper panel, elevation angle-only histogram) confirmed the
results of the 3D distribution map of the elevation and azimuthal angles
combined: the majority of the predominant fiber orientations was on
the transversal plane or close to it, indicated by small elevation angles.
Sixty-nine percent of the predominant fiber orientations had an eleva-
tion angle of smaller than 45° and for 31% of the orientations the angle
was greater than 45°. For concentric cross-sections (Fig. 6, lower panel,
elevation angle-only histogram), the percentage amounts were

comparable to the eccentric cross-sections (66% vs 34%); yet, the dis-
tribution showed a different pattern where two peaks in the elevation
angle, one at 0° and another one around 65°, were clearly discernable.

4. Discussion

The quantitative analysis of DTI data from the seven en-
darterectomy samples demonstrated that the predominant 3D fiber
orientation in approximately half of the volume in advanced stage
carotid plaques is in the circumferential direction with zero or close to
zero elevation angles. The main in vivo mechanical loading exerted on
arteries in vivo is due to the cyclic blood pressure and is in the cir-
cumferential direction. The predominant circumferential alignment of
the fibers in healthy arteries and its significant role in arterial load
bearing capacity have been demonstrated previously (Cardiovascular
Solid Mechanics – Cells, Tissues, and Organs|Jay D.
Humphrey|Springer, n.d.; Holzapfel, 2008; Holzapfel et al., 2002; Sáez
et al., 2016). As plaques are structurally integral parts of the vascu-
lature at the lesion sites, the circumferential fiber orientation in plaques
is likely to contribute to the overall load carrying capacity of the artery
and provide mechanical stability to the plaque in this primary in vivo
loading direction.

This study also demonstrated the presence of a substantial amount
(∼1/3 of the plaque volume) of predominant fiber orientations closest
to the longitudinal direction. Although a few studies (Orekhov et al.,
1987; Pagiatakis et al., 2015) provided observational evidence for
longitudinal fiber alignment in atherosclerotic plaques before, this
important plaque characteristic is usually overlooked as the traditional
way of examining plaque structures are done via histology performed
on transversal plaque cross-sections.

For concentric cross-sections, the longitudinal fiber orientation was
majorly located in the juxtaluminal regions, revealed by both visual
inspection and the statistical analysis, whereas no such structural or-
ganization was discernable in the eccentric cross-sections. This differ-
ence might be due to the different progression stages of the lesions in
the two geometric cross-section types. The concentric cross-sections
displayed relatively less advanced phenotype. Longitudinally oriented
fibers and SMCs in the juxtaluminal regions of healthy arteries have
been previously reported (Canham et al., 1989; Clark and Glagov, 1985;
Orekhov et al., 1987; Stehbens, 1960; Timmins et al., 2010). It is likely,
that at the onset of an atherosclerotic lesion the longitudinally oriented
SMCs in the juxtaluminal regions produce collagen fibers in this di-
rection, whereas the SMCs located deeper in the plaque tissue, possibly
transmigrated from the tunica media, produce fibers in the circumfer-
ential direction. As the plaque further progresses into a more advanced
phenotype, due to the various biological processes involved, the orga-
nization of the fiber alignments becomes less structured.

It is also remarkable that in a previous experimental study
(Holzapfel et al., 2005), the optimal average fiber elevation angle was
calculated to be 60° for “nonatherosclerotic intimal thickening” regions
in human coronary arteries as this provided the best fit to the me-
chanical testing results. This reported value is in accordance with our
finding of a large group of fibers with higher elevation angle (∼65°) in
the concentric cross-sections, which are possibly comparable to the

Fig. 5. Relative amount of three principal fiber orientations (long-
itudinal, circumferential and radial) with respect to radial position in
concentric (left panel) and eccentric plaque cross-sections (right
panel).
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“nonatherosclerotic intimal thickening” regions tested in the above-
mentioned study.

The current study has a number of limitations, some of which are
inherent to the imaging technique used. DTI is a powerful method to
assess the fiber organization in biological tissues. However, it does not
directly image individual fibers. Therefore, it was not possible to de-
termine the amount, the density or the type of the fibers in the plaques.
A further analysis was performed by segmenting out dark regions
visible on the T2-weighted images, which are most likely calcified re-
gions (Shinnar et al., 1999), with minimal fiber content. The volume of
the segmented dark regions was 10% of the total plaque volume and
excluding the regions had almost no effect (< 4%) on the fiber or-
ientation results. It has also to be noted that the plaques were imaged
under load-free conditions. The carotid arteries are subjected to long-
itudinal pre-stretch in situ (Horný et al., 2016), hence slightly higher
elevation angles for the plaque fibers are to be expected in vivo. It is
also possible that (some) collected endarterectomy specimens con-
tained a certain amount of medial layer as the outer border since dis-
section plane in the procedure might have deviated from the intended
internal elastic lamina as reported before (Roberts et al., 2007). This
might have introduced a slight bias in the results towards a greater
relative amount measurement in the circumferential orientation.

The fiber orientation in biological tissues is a major determinant of
tissue mechanical behavior. Its importance for mechanical stresses and
stability of atherosclerotic plaques has also been demonstrated pre-
viously in a numerical study (Liang et al., 2013). However, the bio-
mechanical models of atherosclerotic plaques developed so far did not
incorporate 3D plaque fiber orientations due to the unavailability of
this fundamental information. This study provides this missing knowl-
edge for carotid plaques and to the best of the authors’ knowledge, is

the first to assess the 3D fiber orientation in atherosclerotic plaques in
general. The acquired unique information on 3D plaque fiber direction
will pave the road to more realistic biomechanical plaque modeling for
stress analyses and mechanical stability assessment.
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