4 research outputs found

    Computational Studies of Electrorheological Emulsions

    No full text
    In this thesis we report the results of investigations on the rheological response of emulsions to the application of the electric field. A front-tracking finite difference scheme is used in conjunction with Taylor-Melcher leaky dielectric theory to study the problem. The numerical results in different regions of the deformation-circulation map show that the structure formation in regions I and III can be hindered by the hydrodynamic effect. This is opposite to what is observed in the perfect dielectric cases and region II of the map. For perfect dielectric systems, where the electrohydrodynamics effects are absent, droplets form chain-like structures spanning the distance between the electrodes after the application of the electric field. Subsequently, the chains interact with each other to form columns comprising two or more chains. Point-dipole approximation is used to analyze the structure formation and it is shown that it is also applicable to region II where the hydrodynamic effect is weak and the behavior of the system is mainly governed by the dielectrophoretic forces. It is shown that the chain formation is not possible in regions I and III due to the competition between the dipolar force and torque on one side and hydrodynamic effect on the other side. In region I, the hydrodynamic torque prevents the chain formation by competing with the dipolar torque, which tends to align the drops with the electric field. On the other hand, in region III, the repulsive nature of the hydrodynamic effect opposes the attractive dipolar force and does not allow the particles to form stable chains

    Flow patterns and deformation modes of coaxial liquid columns in transverse electric fields

    No full text
    Steady-state flow patterns and deformation modes of coaxial liquid columns in transverse electric fields are studied analytically. The governing creeping flow equations are solved for Newtonian and (mutually) immiscible fluids in the framework of leaky dielectric theory. A detailed analysis of the electric and flow fields is presented and it is shown that there will be four possible flow patterns in and around the columns, in terms of the direction of the external flow (top-to-sides/bottom-to-sides vs. sides-to-top/sides-to-bottom) and the number of vortices (single vortex vs. double vortices) in the shell, and that the senses of the net electric shear stresses at the inner and the outer interfaces and their relative importance are the key parameters in setting these patterns. Equilibrium shapes of the interfaces are also found and it is shown that there are four distinct modes of deformation, depending on the governing nondimensional parameters of the problem. The instability of the jet is also examined qualitatively using the observations pertaining the instability of single-phase drops and jets and the scaling arguments based on the present solution

    Far-Field Electrostatic Signatures of Macromolecular 3D Conformation

    No full text
    In solution as in vacuum, the electrostatic field distribution in the vicinity of a charged object carries information on its three-dimensional geometry. We report on an experimental study exploring the effect of molecular shape on long-range electrostatic interactions in solution. Working with DNA nanostructures carrying approximately equal amounts of total charge but each in a different three-dimensional conformation, we demonstrate that the geometry of the distribution of charge in a molecule has substantial impact on its electrical interactions. For instance, a tetrahedral structure, which is the most compact distribution of charge we tested, can create a far-field effect that is effectively identical to that of a rod-shaped molecule carrying half the amount of total structural charge. Our experiments demonstrate that escape-time electrometry (ETe) furnishes a rapid and facile method to screen and identify 3D conformations of charged biomolecules or molecular complexes in solution
    corecore