5,304 research outputs found

    A Breakdown Voltage Multiplier for High Voltage Swing Drivers

    Get PDF
    A novel breakdown voltage (BV) multiplier is introduced that makes it possible to generate high output voltage swings using transistors with low breakdown voltages. The timing analysis of the stage is used to optimize its dynamic response. A 10 Gb/s optical modulator driver with a differential output voltage swing of 8 V on a 50 Ω load was implemented in a SiGe BiCMOS process. It uses the BV-Doubler topology to achieve output swings twice the collector–emitter breakdown voltage without stressing any single transistor

    On the Integration of Emerging Stock Markets in the Middle East

    Get PDF
    Results from the Johansen-Juselius test suggest that the Middle East emerging stock markets are segmented globally, but appear highly integrated within the region. Moreover, the Gonzalo- Granger test, in conjunction with error-correction models, indicates that the market in Egypt is a dominant force driving other markets in the region. The apparent segmentation of the markets in the Middle East from the global market implies that these emerging markets provide international investors with potential diversification gains.

    Two Minimal Clinically Important Difference (2MCID) : A New Twist on an Old Concept

    Get PDF
    This work is open access licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, https://creativecommons.org/licenses/by-nc/4.0/Peer reviewe

    Pairs of disjoint matchings and related classes of graphs

    Full text link
    For a finite graph GG, we study the maximum 22-edge colorable subgraph problem and a related ratio μ(G)ν(G)\frac{\mu(G)}{\nu(G)}, where ν(G)\nu(G) is the matching number of GG, and μ(G)\mu(G) is the size of the largest matching in any pair (H,H)(H,H') of disjoint matchings maximizing H+H|H| + |H'| (equivalently, forming a maximum 22-edge colorable subgraph). Previously, it was shown that 45μ(G)ν(G)1\frac{4}{5} \le \frac{\mu(G)}{\nu(G)} \le 1, and the class of graphs achieving 45\frac{4}{5} was completely characterized. We show here that any rational number between 45\frac{4}{5} and 11 can be achieved by a connected graph. Furthermore, we prove that every graph with ratio less than 11 must admit special subgraphs

    A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery.

    Get PDF
    Embedding microfluidic architectures with microneedles enables fluid management capabilities that present new degrees of freedom for transdermal drug delivery. To this end, fabrication schemes that can simultaneously create and integrate complex millimeter/centimeter-long microfluidic structures and micrometer-scale microneedle features are necessary. Accordingly, three-dimensional (3D) printing techniques are suitable candidates because they allow the rapid realization of customizable yet intricate microfluidic and microneedle features. However, previously reported 3D-printing approaches utilized costly instrumentation that lacked the desired versatility to print both features in a single step and the throughput to render components within distinct length-scales. Here, for the first time in literature, we devise a fabrication scheme to create hollow microneedles interfaced with microfluidic structures in a single step. Our method utilizes stereolithography 3D-printing and pushes its boundaries (achieving print resolutions below the full width half maximum laser spot size resolution) to create complex architectures with lower cost and higher print speed and throughput than previously reported methods. To demonstrate a potential application, a microfluidic-enabled microneedle architecture was printed to render hydrodynamic mixing and transdermal drug delivery within a single device. The presented architectures can be adopted in future biomedical devices to facilitate new modes of operations for transdermal drug delivery applications such as combinational therapy for preclinical testing of biologic treatments

    Carbon Nanotubes: Printed Carbon Nanotube Electronics and Sensor Systems (Adv. Mater. 22/2016).

    Get PDF
    Printed electronics and sensors enable new applications ranging from low-cost disposable analytical devices to large-area sensor networks. Recent progress in printed carbon nanotube electronics in terms of materials, processing, devices, and applications is discussed on page 4397 by A. Javey and co-workers. The research challenges and opportunities regarding the processing and system-level integration are also discussed for enabling of practical applications

    The driver landscape of sporadic chordoma.

    Get PDF
    Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma.Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma
    corecore