339 research outputs found

    Screen rhytides:the cosmetic legacy of COVID-19

    Get PDF

    The role of pharmacogenetics in keloid scar treatment:A literature review

    Get PDF

    FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping.

    Get PDF
    Fully-automated brain segmentation methods have not been widely adopted for clinical use because of issues related to reliability, accuracy, and limitations of delineation protocol. By combining the probabilistic-based FreeSurfer (FS) method with the Large Deformation Diffeomorphic Metric Mapping (LDDMM)-based label-propagation method, we are able to increase reliability and accuracy, and allow for flexibility in template choice. Our method uses the automated FreeSurfer subcortical labeling to provide a coarse-to-fine introduction of information in the LDDMM template-based segmentation resulting in a fully-automated subcortical brain segmentation method (FS+LDDMM). One major advantage of the FS+LDDMM-based approach is that the automatically generated segmentations generated are inherently smooth, thus subsequent steps in shape analysis can directly follow without manual post-processing or loss of detail. We have evaluated our new FS+LDDMM method on several databases containing a total of 50 subjects with different pathologies, scan sequences and manual delineation protocols for labeling the basal ganglia, thalamus, and hippocampus. In healthy controls we report Dice overlap measures of 0.81, 0.83, 0.74, 0.86 and 0.75 for the right caudate nucleus, putamen, pallidum, thalamus and hippocampus respectively. We also find statistically significant improvement of accuracy in FS+LDDMM over FreeSurfer for the caudate nucleus and putamen of Huntington\u27s disease and Tourette\u27s syndrome subjects, and the right hippocampus of Schizophrenia subjects

    Unified voxel- and tensor-based morphometry (UVTBM) using registration confidence.

    Get PDF
    Voxel-based morphometry (VBM) and tensor-based morphometry (TBM) both rely on spatial normalization to a template and yet have different requirements for the level of registration accuracy. VBM requires only global alignment of brain structures, with limited degrees of freedom in transformation, whereas TBM performs best when the registration is highly deformable and can achieve higher registration accuracy. In addition, the registration accuracy varies over the whole brain, with higher accuracy typically observed in subcortical areas and lower accuracy seen in cortical areas. Hence, even the determinant of Jacobian of registration maps is spatially varying in their accuracy, and combining these with VBM by direct multiplication introduces errors in VBM maps where the registration is inaccurate. We propose a unified approach to combining these 2 morphometry methods that is motivated by these differing requirements for registration and our interest in harnessing the advantages of both. Our novel method uses local estimates of registration confidence to determine how to weight the influence of VBM- and TBM-like approaches. Results are shown on healthy and mild Alzheimer\u27s subjects (N = 150) investigating age and group differences, and potential of differential diagnosis is shown on a set of Alzheimer\u27s disease (N = 34) and frontotemporal dementia (N = 30) patients compared against controls (N = 14). These show that the group differences detected by our proposed approach are more descriptive than those detected from VBM, Jacobian-modulated VBM, and TBM separately, hence leveraging the advantages of both approaches in a unified framework

    The top 10 cosmeceuticals for facial hyperpigmentation

    Get PDF

    Lessons Learned from the First Decade of Laser-Assisted Drug Delivery

    Get PDF

    Microstructural evaluation of suspension thermally sprayed WC-Co nanocomposite coatings.

    Get PDF
    Microstructural and sliding wear evaluations of nanostructured coatings deposited by Suspension High Velocity Oxy-Fuel (S-HVOF) spraying were conducted in as-sprayed and HIPed (Hot Isostatically Pressed) conditions. S-HVOF coatings were nanostructured via ball milling of the WC-12Co start powder, and deposited via an aqueous based suspension using modified HVOF (TopGun) spraying. Microstructural evaluations of these hardmetal coatings included TEM (Transmission Electron Microscopy), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that nanostructured features inherited from the start powder in S-HVOF spraying were retained in the resulting coatings. The decarburisation of WC due to a higher surface area to volume ratio was also observed in the S-HVOF coatings. Nanostructured and amorphous phases caused by the high cooling rates during thermal spraying crystallized into complex eta-phases after the HIPing treatment. Sliding wear performance indicated that the coating wear was lower for the HIPed coatings

    Cardiopulmonary resuscitation: outcome and its predictors among hospitalized adult patients in Pakistan.

    Get PDF
    Introduction:Our aim was to study the outcomes and predictors of in-hospital cardiopulmonary resuscitation (CPR) among adult Patients at a tertiary care centre in Pakistan.Methods:We conducted a retrospective chart review of all adult Patients (age \u3e or =14 years), who underwent CPR following cardiac arrest, in a tertiary care hospital during a 5-year study period (June 1998 to June 2003). We excluded Patients aged 14 years or less, those who were declared dead on arrival and Patients with a do not resuscitate order. The 1- and 6-month follow-ups of discharged Patients were also recorded.Results:We found 383 cases of adult in-hospital cardiac arrest that underwent CPR. Pulseless electrical activity was the most common initial rhythm (50%), followed by asystole (30%) and ventricular tachycardia/fibrillation (19%). Return of spontaneous circulation was achieved in 72% of Patients with 42% surviving more than 24 h, and 19% survived to discharge from hospital. On follow-up, 14% and 12% were found to be alive at 1 and 6 months, respectively. Multivariable logistic regression identified three independent predictors of better outcome (survival \u3e24 h): non-intubated status [adjusted odds ratio (aOR): 3.1, 95% confidence interval (CI): 1.6-6.0], location of cardiac arrest in emergency department (aOR: 18.9, 95% CI: 7.0-51.0) and shorter duration of CPR (aOR: 3.3, 95% CI: 1.9-5.5).Conclusion:Outcome of CPR following in-hospital cardiac arrest in our setting is better than described in other series. Non-intubated status before arrest, cardiac arrest in the emergency department and shorter duration of CPR were independent predictors of good outcome

    Sliding wear investigation of suspension sprayed WC-Co nanocomposite coatings.

    Get PDF
    Sliding wear evaluation of nanostructured coatings deposited by Suspension High Velocity Oxy-Fuel (S-HVOF) and conventional HVOF (Jet Kote (HVOF-JK) and JP5000 (HVOF-JP)) spraying were evaluated. S-HVOF coatings were nanostructured and deposited via an aqueous based suspension of the WC-Co powder, using modified HVOF (TopGun) spraying. Microstructural evaluations of these hardmetal coatings included X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDX). Sliding wear tests on coatings were conducted using a ball-on-flat test rig against steel, silicon nitride (Si3N4) ceramic and WC-6Co balls. Results indicated that nanosized particles inherited from the starting powder in S-HVOF spraying were retained in the resulting coatings. Significant changes in the chemical and phase composition were observed in the S-HVOF coatings. Despite decarburization, the hardness and sliding wear resistance of the S-HVOF coatings was comparable to the HVOF-JK and HVOF-JP coatings. The sliding wear performance was dependent on the ball-coating test couple. In general a higher ball wear rate was observed with lower coating wear rate. Comparison of the total (ball and coating) wear rate indicated that for steel and ceramic balls, HVOF-JP coatings performed the best followed by the S-HVOF and HVOF-JK coatings. For the WC-Co ball tests, average performance of S-HVOF was better than that of HVOF-JK and HVOF-JP coatings. Changes in sliding wear behavior were attributed to the support of metal matrix due to relatively higher tungsten content, and uniform distribution of nanoparticles in the S-HVOF coating microstructure. The presence of tribofilm was also observed for all test couples
    • …
    corecore