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a b s t r a c t

Voxel-based morphometry (VBM) and tensor-based morphometry (TBM) both rely on spatial normali-
zation to a template and yet have different requirements for the level of registration accuracy. VBM
requires only global alignment of brain structures, with limited degrees of freedom in transformation,
whereas TBM performs best when the registration is highly deformable and can achieve higher regis-
tration accuracy. In addition, the registration accuracy varies over the whole brain, with higher accuracy
typically observed in subcortical areas and lower accuracy seen in cortical areas. Hence, even the
determinant of Jacobian of registration maps is spatially varying in their accuracy, and combining these
with VBM by direct multiplication introduces errors in VBM maps where the registration is inaccurate.
We propose a unified approach to combining these 2 morphometry methods that is motivated by these
differing requirements for registration and our interest in harnessing the advantages of both. Our novel
method uses local estimates of registration confidence to determine how to weight the influence of
VBM- and TBM-like approaches. Results are shown on healthy and mild Alzheimer’s subjects (N ¼ 150)
investigating age and group differences, and potential of differential diagnosis is shown on a set of
Alzheimer’s disease (N ¼ 34) and frontotemporal dementia (N ¼ 30) patients compared against controls
(N ¼ 14). These show that the group differences detected by our proposed approach are more descriptive
than those detected from VBM, Jacobian-modulated VBM, and TBM separately, hence leveraging the
advantages of both approaches in a unified framework.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Voxel-basedmorphometry (VBM) (Ashburner and Friston, 2000;
Mechelli et al., 2005) is a widely used whole-brain analysis method
for characterizing morphologic shape differences using brain mag-
netic resonance imaging (MRI) and has been useful for investigating
a wide range of neurological and psychiatric diseases, tracking
normal development of the brain, and assessing the structural effect
of neuroplasticity in the human brain. In essence, VBM is a voxel-
wise comparison of tissue segmentation maps that have been
brought into global alignment (through spatial normalization) and
smoothed with an isotropic Gaussian kernel. To deal with brain
regions that may expand or contract through the spatial normali-
zation process, a local measure of contraction or expansion is often

used to modulate the density maps. This procedure, known as Ja-
cobian modulation, uses the determinant of the Jacobian derived
from the transformations that register each brain to the common
space (Davatzikos et al., 2001), thus dealing with gross-volume
differences that may exist and leading to a more natural interpre-
tation of tissue volume with respect to the unwarped maps. This
spatial normalization commonly consists of an initial 12-parameter
affine registration followed bya nonlinear registration step. Because
the process of spatial normalization in VBM ismeant to only globally
align the brain, the registration is thus limited in the degrees of
freedom (dof) used to transform the images. Previouswork has used
transformationsmodeledwith a linear combination of smooth basis
functions, as in Ashburner and Friston (2000), or those spline pa-
rameterizations with wide (>10 mm) control-point spacing, as in
Douaud et al. (2007). Limiting the dof is essential to VBM without
Jacobian modulation, because if the dof were high enough to allow
for complete alignment of the anatomy, the differences would not
be detected in the gray-matter (GM) density maps (Thacker, 2005).
Note that depending on the type of anatomy being registered,
complete alignment may or may not be achievable. For example,
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many regions in the cerebral cortex have individualized folding
patterns that would confound complete alignment even with high
dof, whereas many subcortical nuclei have simpler morphology and
could be completely aligned given enough dof.

A recent large-scale evaluation of brain registration carried out
by Klein et al. (2009) showed that methods with highly deform-
able transformation models (high dof) perform significantly more
accurate registration than those with limited dof. In particular,
diffeomorphic registration algorithms that model the trans-
formation as a smoothly varying fluid flow while ensuring
smoothness and invertibility (Avants et al., 2008; Beg et al., 2005;
Khan et al., 2013) have been shown to outperform competing
methods in many situations. These methods in principle cannot be
directly used with VBM because of the previous considerations;
thus, morphometries based on these high dof registration tech-
niques are deformation or tensor based, that is, statistics are
performed on the deformation fields (deformation-based mor-
phometry, Ashburner et al., 1998), or the Jacobian tensors of these
deformation fields (tensor-based morphometry [TBM], Davatzikos
et al., 1996), and do not make use of the smoothed tissue seg-
mentations. However, these techniques rely on a high degree of
registration accuracy and may be underpowered in regions where
registration accuracy is lower.

It is known that issues such as the size, shape, and folding
pattern of structures or local image contrast changes can effect the
accuracy; the cortical regions of the brain pose significant chal-
lenges for even the most advanced brain registration algorithms
(Klein et al., 2009), and, thus, uncertainty is typically higher in these
regions. Furthermore, in the case of disease-specific analysis, the
particular disease can potentially have very different spatial atro-
phy profiles and, therefore, also influence the uncertainty in
registration as a function of location in the brain. In regions where
we have more uncertainty in registration, the Jacobian maps would
contain more noise, and, thus, a VBM approach would be more
sensitive and powerful in these regions. In regions where we have
less uncertainty in registration, the Jacobian contains more infor-
mation, and, thus, a TBM approach would be preferred in these
regions. Note that VBM and TBM have similar interpretations as the
proportion of tissue volume in a subject over an atlas, and both rely
on the same image features (tissue contrast from T1-weighted
structural images) to assess the same biological phenomenon
(volume change). Because of this inherent similarity, they are ideal
candidates for a unified method that combines the advantages of
each approach into a single feature.

We propose here a novel unification of VBM and TBM that uses
local estimates of registration confidence or inversely, uncertainty,
to select whether VBM, TBM, or a combination should be used at a
given voxel. To perform this unification, we observe that effec-
tively, in regions where we have high confidence in registration,
the determinant of Jacobian (TBM) is used, in regions where we
have lower confidence in registration, the tissue segmentation
map (VBM) is used, and in regions with an intermediate level of
registration confidence, a smooth transition between the 2
methods is used. Given a group-wise registration setting, we show
how the registration confidence can be estimated locally at each
voxel and how to use that to unify the TBM and VBM approaches
in 1 single statistical parametric map (SPM). The advantage of our
locally adaptive registration-confidence weighted approach is that
the choice of VBM or TBM or a combination occurs at each voxel
based on the registration confidence. In this way, we can produce
a single SPM quantifying brain morphometry based on the prin-
ciples of both VBM and TBM. In addition, the registration accuracy
or confidence map is also useful in interpreting desired results in
the context of group-wise registration accuracy over the whole
brain.

2. Methods

We will first describe our general framework for estimation of
registration confidence and unification of VBM and TBM based on
local measures of confidence in aligning tissue segmentations.
Then, we will describe our implementation of this framework that
involves a multistructure group-wise registration to an average
template. We applied our unified morphometry framework to an
open access set of 150 elderly subjects, healthy and Alzheimer’s
disease (AD), and examined the effect of age and group, showing
the results for various parameter choices. We also applied it to a
database of frontotemporal dementia (FTD) and AD patients to
investigate the use of whole-brain morphometry in differential
diagnosis of neurodegenerative disease patients.

2.1. Estimating registration confidence

In VBM and TBM, brain MRI is registered to a common tem-
plate, where analysis of tissue density and deformation derivatives
can take place. For a given set of subjects, we would like to esti-
mate, at a spatially local level, the uncertainty in aligning the
anatomy, to provide an estimate of confidence. Estimating spatial
uncertainty in registration is an open problem, and there has been
interest in recent years to better inform users in clinical applica-
tions of registration. Hub et al. (2009) measured uncertainty by
examining how random perturbations of the final registration
transform affect a given cost function. Kybic (2010) used bootstrap
resampling to estimate the uncertainty of the covariance matrix
and evaluated their approach on the simple case where trans-
formations are restricted to 2-dimensional translations. More
generally, spatial uncertainty in pairwise registrations can be
modeled in a Bayesian framework as the variance in the posterior
distribution, because the posterior is defined as the distribution of
deformation parameters. Risholm et al. (2013) used computa-
tionally intensive Markov Chain Monte Carlo methods to sample
the posterior distribution and estimate the uncertainty as the
variance of parameters in this distribution, and Simpson et al.
(2012) proposed a more efficient variational Bayes model for the
estimation of uncertainty.

For the application to group studies, we are interested in the
uncertainty of group-wise registration, which is dependent both
on the pairwise spatial uncertainty, as explored in the previous
studies, and the anatomic variability across the subjects. For the
sake of extensibility to arbitrary registration methods, we would
like to use an approach of measuring uncertainty that is not
computationally expensive (Risholm et al., 2013) or require a
custom formulation and optimization of the registration (Simpson
et al., 2012). Thus, instead of specific estimation of the posterior
probability distribution, we represent the registration confidence
as the residual spatial variability remaining after group-wise
registration. To define this, we first consider the general situa-
tion where corresponding entities exist across MR images, which
could be various representations of anatomy including landmarks,
curves, volumes, or surfaces. Then, the registration confidence at
each entity, r, can be defined as the probability that corresponding
entities, ri, from all subjects, i ¼ 1,., N, are within ε distance of the
mean location of that entity, mr:

pc ¼ pðjjri � mr jj < εÞ (1)

Applying Chebyshev inequality gives us a lower bound of the
confidence as:

pc � 1� s2
r

ε
2 ; (2)
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where s2
r is the spatial variance at entity r. With this formulation,

the minimum confidence at a given location becomes a simple
computation involving the variance of each landmark and the
parameter ε. The free parameter ε specifies the tolerance or margin
for registration uncertainty; increasing the tolerance leads to
effectively higher confidence, pc, and decreasing the tolerance leads
to effectively lower confidence.

In this article, we use GM tissue segmentations as the MRI en-
tities, using the nearest distance between GM tissue segmentations,
S, to approximate Equation (1):

jjri � mr jjzDist
�
Si
�
x
�
; S
�
x
��

(3)

jjri � mr jj ¼
(

0 if Si
�
x
� ¼ S

�
x
�
;����DTSi�x�

���þ ���DTS�x�
���� if Si

�
x
�
sS

�
x
�
;

(4)

where DT denotes the distance transform of a binary image, Si(x) is
a tissue segmentation for subject i at spatial location x, and S is a
consensus tissue segmentation (e.g., averaged and thresholded)
based on all subjects. Equation (4) provides a measure of how close
or far the nearest boundaries are for every voxel where the seg-
mentations do not agree. Given a number of images that have been
registered into a common space, and GM tissue segmentations, we
can apply this approximation to efficiently compute s2 in Equation
(2) for each spatial location and thus generate a registration con-
fidence map based on a specific setting of ε.

2.2. Unified voxel- and tensor-based morphometry

Once we have an estimate of the registration confidence at a
given spatial location in the template, we can use this to deter-
mine whether a VBM- or TBM-like approach is suitable. Recall that
in traditional VBM, statistics are performed on the tissue seg-
mentation probabilities (or densities) of each subject transformed
to the template, referred to here as S. In TBM, statistics are per-
formed on the determinant Jacobian of the transformations, jDfj.
In a unified model, if registration confidence is very low, then we
should place less weight on the determinant Jacobian, because this
is derived directly from the deformation fields from registration.
Conversely, if the registration confidence is very high, then we
should place less weight on the density maps, because the anat-
omy is expected to be well aligned in this case. This leads us to the
following simple model for the unified feature, U, at spatial loca-
tion, x:

UðxÞ ¼ SðxÞ1�pcðxÞ,
���DfðxÞ���pcðxÞ

; (5)

where the influence of the density map, S, in the template space,
and determinant Jacobian, jDfj, are weighted by the registration
confidence, pc. If pc ¼ 0, then we have the traditional VBM
approach, and if pc ¼ 1, we have the traditional TBM approach.
At the midpoint, pc ¼ 5, we have UðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðxÞDfðxÞp
, an

approach that is proportional to Jacobian-modulated VBM or
mass-preserving maps, where we effectively have volume in
place of density. We used this multiplicative model for
combining the 2 approaches, because it directly relates to the
VBM without modulation, VBM with modulation, and TBM
approaches.

2.3. Implementation

We now describe our specific implementation of unified
voxel- and tensor-based morphometry (UVTBM), namely, how

we generated tissue segmentations, performed the registration,
and estimated the registration confidence map. Note that the
UVTBM model described earlier can be applied with typically
used segmentation and registration techniques as long as
the transformation model used in the registration is highly
deformable.

2.3.1. Segmentation and registration
For segmentation and MRI preprocessing, we used the Free-

Surfer image analysis suite (Fischl et al., 2002, 2004). Segmenta-
tions of the subcortical structures were obtained from FreeSurfer’s
subcortical processing stream (Fischl et al., 2002), and the cortical
GM structures were obtained from a volumetric mask of the cortical
surfaces (Fischl et al., 2004). These were both combined to form a
single GM segmentation.

We used a group-wise multistructure registration approach
(Khan et al., 2013), which used subcortical segmentations and
cortical parcellations (Fischl et al., 2004) along with the MRI to
concurrently drive a diffeomorphic registration (Christensen et al.,
1996). The Christensen registration algorithm was employed
instead of large deformation diffeomorphic metric mapping
because of its efficiency, especially when employed in a multi-
structure group-wise approach. The FreeSurfer image analysis
suite (Dale et al., 1999; Fischl et al., 1999, 2002) was used to
generate subcortical segmentations and cortical parcellations
making up the multistructure image set. We used the following 8
subcortical structures, left and right inclusive: lateral ventricles,
caudate nucleus, putamen, pallidum, nucleus accumbens, thal-
amus, hippocampus, and amygdala. For cortical structures, we
used the following 33 labels, left and right inclusive: bankssts
(banks around the superior temporal sulcus), caudal anterior
cingulate, caudal middle frontal, corpus callosum, cuneus, ento-
rhinal, fusiform, inferior parietal, inferior temporal, isthmus
cingulate, lateral occipital, lateral orbitofrontal, lingual, medial
orbitofrontal, middle temporal, parahippocampal, paracentral,
pars opercularis, pars orbitalis, pars triangularis, pericalcarine,
postcentral, posterior cingulate, precentral, rostral anterior
cingulate, rostral middle frontal, superior frontal, superior parie-
tal, superior temporal, supramarginal, frontal pole, temporal pole,
and transverse temporal. Including the MRI as the first structure,
we have 43 structure channels for each hemisphere making up
our multistructure set. To limit computational and memory re-
quirements, we construct a bounding box around the template
brain and use this subvolume in registration instead of the entire
256 � 256 � 256 volume. The bounding box is defined using the
extents of the skull-stripped brain, allowing for at least 16 voxels
(16 mm) of padding at each boundary, and also ensuring the di-
mensions of the image are divisible by 16, such that this level of
data parallelization could be used. The bounding box is applied to
both the MRI and multistructure set of the template. The group-
wise approach was initialized by first selecting a single subject
as an exemplar template, affinely registering all subjects to it, and
then averaging the registered images. For the diffeomorphic
registration, a multiscale smoothing scheme was used that suc-
cessively decreased the viscosity parameter, a, after each iteration.
The sequence used was a ¼ 2, 1, 0.5, 0.1, with a fixed g ¼ 0.01,
which was chosen based on experiments quantifying effective
smoothing to be equivalent to 20-, 15-, 10-, and 5-mm effective
smoothing, respectively, as shown in Appendix B of Khan (2011).

Group-wise registration was carried out on the N T1 images in
the database, Ii, generating transformations for each subject, fi, that
comprised both the affine and diffeomorphic transformations to the
template. GM segmentation maps, Si, were then transformed to the
template, S0i ¼ Sif

�1, and the determinant Jacobians were also
computed for each subject, jDfj.

A.R. Khan et al. / Neurobiology of Aging 36 (2015) S60eS68S62



2.3.2. Unified VTBM
Once the registration confidence map, pc, was computed for a

given ε in the template space, we applied Equation (5) to generate
unified density and Jacobian maps, Ui, for each subject:

Ui
�
x
� ¼ SiðxÞ1�pcðxÞ,

��Dfi
�
x
���pcðxÞ

The normalized FreeSurfer GM segmentations for each subject
and the registration confidence map were smoothed by a Gaussian
filter (10-mm full-width half maximum) before applying Equation
(5). The determinant Jacobian maps were not smoothed because
the diffeomorphic registration already ensured a high level of reg-
ularity in the maps. We performed statistical analysis using the
SurfStat package (http://www.math.mcgill.ca/keith/surfstat/) to
generate SPMs using the UVTBM maps, using random field theory
correction based on peak T statistics and cluster extent.

To compare against traditional VBM, Jacobian-modulated VBM,
and TBM approaches, we used UVTBMwith confidencemaps, pc, set
to a globally constant value. By setting pc ¼ 0, we have pure VBM,
setting pc¼ 0.5, we have Jacobian-modulated VBM, and setting pc¼
1, we have a pure TBM. We compared against these approaches in
this way to ensure that identical preprocessing steps and registra-
tions are used and, thus, do not confound the comparison, as would
occur if a different software package (SPM and FSL) were used
instead. Note that the setting of pc ¼ 0.5 does not exactly relate to
the Jacobian-modulated VBM as employed in the aforementioned
software packages, as we do not smooth the Jacobian maps here.
Because Jacobians are not smoothed in TBM implementations, we
also chose not to smooth them here so the extremes of zero
registration confidence and full registration confidence relate to
pure VBM and TBM, respectively.

3. Experiments and results

3.1. Alzheimer’s disease

We used MRI datasets from the Open Access Series of Imaging
Studies (http://www.oasis-brains.org), referred to as database 1, to
evaluate morphometry in an elderly population. We used baseline
scans from a dataset consisting of 150 subjects, aged 60e96 years,
with 64 subjects characterized with very mild to mild Alzheimer’s
disease (Marcus et al., 2010). This database was chosen to facilitate

comparison with previous related studies on the same database
(Khan, 2011). We first performed group-wise registration on all 150
subjects, and Fig. 1 shows representative axial slices of the average
MRI and GM segmentations for the 150 subjects. Then, we gener-
ated the registration confidence maps for varying ε, shown in Fig. 2,
where one can see high confidence in the subcortex and temporal
cortex and lower confidence in the posterior cortex.

We used a general linear model M ¼ 1 þ age þ gender þ group
and performed analyses for the main effect of age and group
(nondemented vs. demented) and used random field theory mul-
tiple comparison correction to find significant voxels and clusters.
Figure 3 shows statistical maps with main effect for age comparing
our UVTBM approach (with a range of error tolerances, ε) with
traditional approaches of VBM (setting pc ¼ 0), Jacobian-modulated
VBM (pc ¼ 0.5), and TBM (pc ¼ 1). Here, we see that VBM and TBM
reveal complementary differences in the cortical regions, with VBM
more sensitive posteriorly (where registration confidence is lower)
and TBM anteriorly (where registration confidence is higher); yet,
our UVTBM approach is sensitive to differences revealed by both.
Figure 3 also illustrates the dependency on the uncertainty toler-
ance (ε), as it affects whether a predominant VBM or TBM approach
is to be used in the cortex; we see that UVTBM with high tolerance
(ε ¼ 0.75) results in higher overall confidence in the cortex and a
map similar to Jacobian-modulated VBM. Figure 4 shows the sta-
tistical maps with main effect for group, effectively showing where
demented subjects have significantly decreased GM density, vol-
ume, and increased contraction. We see much of the differences in
the medial temporal lobe, as is expected for dementia of Alz-
heimer’s type. In this comparison, the results for UVTBM are very
similar to that of modulated VBM and TBM, indicating that much of
the information here is encoded in the determinant Jacobian.
Figure 4 also reveals that the range of uncertainty tolerance (ε)
evaluated here did not have a major effect on the resulting maps;
however, a larger range of values would reveal behavior similar to
VBM or TBM.

3.2. Potential for differential diagnosis

Differential diagnosis of dementia is often difficult because pa-
tients may exhibit the same cognitive impairments with different
neuropathology. To investigate the potential of our UVTBM
approach to discriminate between various diseases, we used data

Fig. 1. Axial slices of the database 1 (Open Access Series of Imaging Studies, Alzheimer’s disease) (A) average T1 magnetic resonance imaging and (B) average gray matter for all 150
subjects spatially normalized to the template space. We see crisp boundaries in the subcortical and cortical regions near major sulci and in the temporal lobe and blurred boundaries
in many other cortical regions indicating the level of registration accuracy.
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from a study consisting of 14 healthy control subjects (aged 49e62
years), 34 probable AD patients (48e62 years), and 30 FTD patients
(48e62 years) with magnetization-prepared rapid gradient-echo
scans acquired on a 1.5-T scanner, referred to as database 2.

We performed group-wise registration using all subjects in the
combined database, applied our VTBM approach with varying ε,
and compared this against VBM and TBM approaches. We
compared each group with the control group to observe how the
patterns of neurodegeneration differ in each disease by computing
statistical parametric maps with the general linear model, con-
trolling for age and gender, M ¼ 1 þ group þ age þ gender, where

the group was modeled with separate dummy variables for each of
the 3 groups. Figure 5 shows the T statistics and significant maps
comparing the control group with each other group. We see that
these findings agree very well with the previous known neuropa-
thology and atrophy patterns of these diseases. In the probable
Alzheimer’s group, we see cortical atrophy that is stronger in pos-
terior regions of the brain and expansion of the body of the lateral
ventricles. The FTD group exhibits a contrasting pattern, with
cortical atrophy mainly restricted to the frontal and temporal lobes
and with expansion seen in the anterior horns of the lateral ven-
tricles, hallmark patterns of differences between these 2 dementias

Fig. 2. Registration confidence maps for database 1 (Open Access Series of Imaging Studies, Alzheimer’s disease) generated with varying ε shown in a representative axial slice
(AeD) and 3-dimensional visualizations highlighting regions of low registration confidence in 2 of these cases: (E) ε ¼ 0.5 and (F) ε ¼ 0.75. Regions shown colored here, indicating
low pc, will be more heavily weighted to voxel-based morphometry with the remaining brain regions, higher pc, weighted toward tensor-based morphometry. Note that confidence
is lower in the occipital and frontoparietal cortices and is higher near the sensorimotor cortex where the central sulcus is well aligned. As the tolerance for error, ε, is increased, the
method assumes higher confidence in registration over a larger area of the brain and pc is also increased throughout. (For interpretation of the references to color in this Figure, the
reader is referred to the web version of this article.)

Fig. 3. Comparison of T statistics and significant voxels/clusters (red/blue) for the age effect in database 1, using (AeC) unified voxel- and tensor-based morphometry (UVTBM) (with
varying ε), (D) VBM, (E) Jacobian-modulated VBM, and (F) TBM. Axial slices for T statistics are positive where gray matter decreases with increasing age, and the significant voxel/
cluster visualizations show this negative age contrast above the positive age contrast. We see that the UVTBM approach detects the complementary differences that both VBM and
TBM detect. (For interpretation of the references to color in this Figure, the reader is referred to the web version of this article.)

A.R. Khan et al. / Neurobiology of Aging 36 (2015) S60eS68S64



(Du et al., 2007; Gee et al., 2003). We also compared these UVTBM
findings against the traditional VBM, Jacobian-modulated VBM, and
TBM analyses, as shown in Fig. 6 for AD and Fig. 7 for FTD. Again, we
see that UVTBM achieves consistent results across the error toler-
ance parameter choices that were explored here (ε) and reveals a
cortical atrophy pattern similar to VBM without modulation. We
also see that Jacobian modulation applied in its standard global
approach to AD subjects in Fig. 6E reduces sensitivity to changes in

the frontoparietal cortex, where registration accuracy is more var-
iable. This effect is less evident but still observable in the FTD
comparison.

4. Discussion

In this article, we described a novel unified VBM þ TBM
framework where the registration confidence is used to weight the

Fig. 4. Statistical analysis of group differences in database 1 (nondemented vs. demented) showing T statistics and significant voxels/clusters (red/blue) using (AeC) our unified
voxel- and tensor-based morphometry (UVTBM) approach (with varying ε), (D) VBM, (E) Jacobian-modulated VBM, and (F) TBM. Positive T statistics and corresponding significant
voxels/clusters relate to decreased gray-matter density and volume and increased contraction in the mild Alzheimer’s disease group. Most differences are in the medial temporal
regions, with the unified approach generally possessing enough confidence in this region to avoid pure VBM-like analysis. (For interpretation of the references to color in this Figure,
the reader is referred to the web version of this article.)

Fig. 5. Whole-brain Unified voxel- and tensor-based morphometry for database 2 showing T statistics and significance map visualizations comparing controls with (A) Alzheimer’s
disease and (B) frontotemporal dementia. In the significance map 3-dimensional visualizations (bottom row “glass brain”), voxel-wise significance is represented with red, and
cluster-wise significance is represented by blue, with contraction and expansion shown in Panel 1 and Panel 2, respectively, in each case. (For interpretation of the references to color
in this Figure, the reader is referred to the web version of this article.)
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relative influence of VBM and TBM in the resulting unifiedmap. The
method for estimating registration confidence made use of a sur-
rogate distance-based measure, and other surrogate measures such
as regional overlap and local similarity could also be used to a
similar effect. These types of surrogates have been employed in
multi-atlas label fusion techniques and have thus been shown to
effectively estimate registration confidence, with the maps gener-
ated here revealing heterogeneous registration accuracy across the
brain. These findings agree well with a recent fiducial-based eval-
uation of registration accuracy (Pereira et al., 2010) that also found
greater accuracy in internal regions compared with the external
regions of the brain. This heterogeneity affects the interpretation of
VBM, modulated VBM, and TBM results, which are traditionally
assumed to be objective and unbiased toward specific brain regions.
Our unified approach makes use of these confidence estimates to
provide a more objective measure that is less sensitive to the
regional biases in registration accuracy.

The choice of the tolerance parameter, ε, globally affects the
confidence maps and relative weighting of VBM and TBM features
in the unified approach. We performed analysis with range of
values, and we did not explore methods for optimal choice of this
parameter. However, the choice of this parameter is highly
dependent on how the residual spatial variability, jjr � mr jj, is
approximated; thus, the parameter should be tuned according to
the approximation method used. Alternatively, if expert-placed fi-
ducials or landmarks were available on a training set, these could be
used in future to tune the selection of ε against gold-standard es-
timates of registration uncertainty.

This work focussed on 2 related and widely used techniques for
morphometry, VBM and TBM; however, another popular technique
for assessing tissue atrophy is cortical thickness analysis (Fischl and
Dale, 2000). We expect that techniques that employ estimates of
regional registration confidence in the analysis of cortical thickness
would also lead to greater statistical power; however, we leave this

Fig. 6. Statistical analysis of group differences in database 2 (Alzheimer’s disease [AD] vs. controls) showing T statistics and significant voxels/clusters (red/blue) using (AeC) our
unified voxel- and tensor-based morphometry (UVTBM) approach (with varying ε), (D) VBM, (E) Jacobian-modulated VBM, and (F) TBM. Positive T statistics relate to contraction or
gray-matter loss in the AD group relative to controls, with significant voxels/clusters shown in the first row of 3D “glass brains” in each panel; the second row refers to significant
areas of expansion. The colour bar for the T-statistic maps is shown in Fig. 5. (For interpretation of the references to color in this Figure, the reader is referred to the web version of
this article.)
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investigation to future work. Scalar momentum maps have also
been used for morphometric analysis and were applied in a
multivariate setting to explore spatial patterns of atrophy with a set
of clinical variables (Singh et al., 2010). Our unified VTBM approach
would also provide scalar maps and these could be used in the same
multivariate partial least-square analysis. Scalar momentum maps
more completely describe shape change than TBM and VBM,
because they theoretically fully describe the deformation, and
comparison of the proposed technique with momentum analysis is
also part of our planned future work.

In Figs. 6 and 7, we see that the cortical changes revealed by
TBM are more focal, with changes seen in the posterior cingulate
and angular gyrus in AD, and medial frontal and anterior cingulate
cortices in FTD, whereas VBM revealed more widespread changes.
These widespread significant changes are somewhat diluted when
the Jacobian is mixed into the VBM maps, although this mixture
does capture some subcortical changes near the ventricles that are

found using TBM (where the determinant of Jacobian is more
likely to be accurate). The proposed VTBM provides a map similar
to the Jacobian-modulated VBM, however, with higher sensitivity
to the cortical changes that are observed with VBM. The results
are similar for the range of epsilon values tested, although more
TBM-like behavior is seen with higher epsilon, as was observed in
the other examples. We also note that, compared with other TBM
studies on similar populations, our implementation of TBM ap-
pears to be less sensitive, relative to VBM. This could be because of
the amount of regularization used in the registration or because
Gaussian smoothing was not applied to the Jacobian determinant
maps. We plan to explore the effect of optimal regularization and
Gaussian smoothing in future work, with the expectation that
optimal application of TBM would lead to improvements in both
Jacobian-modulated VBM and our proposed VTBM. Because
further optimization of TBM and VBM implementations is
possible, we do not suggest that our results show superiority of

Fig. 7. Statistical analysis of group differences in database 2 (frontotemporal dementia [FTD] vs. controls) showing T statistics and significant voxels/clusters (red/blue) using (AeC)
our unified voxel- and tensor-based morphometry (UVTBM) approach (with varying ε), (D) VBM, (E) Jacobian-modulated VBM, and (F) TBM. Positive T statistics relate to contraction
or gray-matter loss in the FTD group relative to controls, with significant voxels/clusters shown in the first row of 3D “glass brains” in each panel; the second row refers to significant
areas of expansion. The colour bar for the T-statistic maps is shown in Fig. 5. (For interpretation of the references to color in this Figure, the reader is referred to the web version of
this article.)
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one method over another but instead imply that the locally
adaptive combination of TBM and VBM can potentially lead to
improved results.

We proposed a novel model for combining VBM and TBM that
takes advantage of the merits of each approach and demonstrated
its validity and usefulness for morphometric analysis. Our results
have shown that alignment accuracy using high-dimensional
nonrigid registration can vary throughout the brain, typically
with posterior regions showing lower and subcortical regions
showing higher accuracy in registration. Experiments presented in
this article using our novel locally adaptive approach to generate
SPMs suggest that such adaptive approaches offer greater sensi-
tivity and accuracy for detecting group differences than traditional
approaches that do not employ local adaptivity.
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