15 research outputs found
Recommended from our members
Genotoxicity of haloacetic acids, aspirin and ibuprofen in human cells. Genotoxic effects of water disinfectant- by-products in human blood and sperm and bulk and nano forms of aspirin and ibuprofen in human blood of respiratory disease patients
This project focuses on two important topics which may pose hazards to human health. Firstly, drinking water disinfection by-products (DBPs), which are generated by the chemical disinfection of water have been investigated. What has not been shown is the effect of DBPs in human germ cells as well as somatic cells and whether oxidative stress is involved in the mechanism of genotoxic action. Three different DBPs (halo acetic acids: HAAs), together with the antioxidants – catalase and butylated hydroxyanisole (BHA), were investigated in peripheral blood cells and sperm from healthy individuals using the Comet assay and lymphocytes only using the micronucleus assay. Secondly, nanoparticles of the non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and ibuprofen, have been investigated in patients with respiratory diseases, in the micronucleus assay and the Comet repair assay. NSAIDs inhibit cyclooxygenase enzyme activity, which plays part in tumour progression. In the Comet assay, BHA and catalase were able to reduce DNA damage in both cell types compared to HAAs alone. Similarly, in the micronucleus assay, micronuclei were reduced with the antioxidants, suggesting oxygen radical involvement in both assays. With the NSAIDs, reductions were seen for DNA damage in the micronucleus assay with aspirin and ibuprofen nanoparticles compared to their bulk forms. Using the Comet repair assay, aspirin and ibuprofen nanoparticles aided repair of DNA to a greater extent than their bulk counterparts, which in turn showed better repair compared to samples repaired without NSAIDs. These observations show the importance of DBPs and NSAIDs in genotoxic public health issues.United Kingdom India Education and Research Initiative (UKIERI)
Recommended from our members
DNA damage in lymphocytes from healthy individuals and respiratory disease patients, treated ex vivo/in vitro with aspirin and ibuprofen nanoparticles compared to their bulk forms
YesConference abstrac
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
Background:
Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.
Findings:
Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79).
Interpretation:
In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Background:
In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936).
Findings:
Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001).
Interpretation:
In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Recommended from our members
Comparison of DNA damage in human lymphocytes from healthy individuals and asthma, COPD and lung cancer patients treated in vitro / ex vivo with the bulk nano forms of aspirin and ibuprofen
NoNon-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX enzyme activity, a significant mechanism of action of NSAIDs. Inflammation is associated with increasing cancer incidence. Recent pre-clinical and clinical studies have shown that NSAID treatment could cause an anti-tumour effect in cancers. Such studies are lengthy and expensive. The present study, however, examined DNA damage in the Comet and micronucleus assays in peripheral blood lymphocytes of patients with respiratory diseases and healthy individuals using the nanoparticle (NP) and bulk versions of the NSAIDs, aspirin and ibuprofen. Lymphocytes are suitable surrogate cells for cancers and other disease states. DNA damage decreased in lymphocytes from healthy individuals, asthma, COPD and lung cancer patient groups after treatment with aspirin nano-suspension (ASP N) and ibuprofen nano-suspension (IBU N) compared to their bulk version (micro-suspension) in both assays. However, when ASP N was compared to untreated lymphocytes in all groups in the Comet assay, DNA damage significantly decreased in all groups, except the asthma group. When IBU N was compared to untreated lymphocytes, in healthy individuals and the lung cancer group, DNA damage decreased, but increased in asthma and COPD groups. Similarly, micronuclei (MNi) increased after ASP N and IBU N in the healthy individual and lung cancer groups, and decreased in asthma and COPD groups. Also shows that whilst there are basic similarities with different genetic endpoints in terms of nano and bulk forms, but highlights some differences between the disease states examined. Furthermore, lymphocyte responses after IBU N and ibuprofen bulk were investigated by patch-clamp experiments demonstrating that IBU N inhibited ion channel activity by 20%. This molecular epidemiology approach mirrors pre-clinical and clinical findings, and provides new information using nanoparticles
Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm
NoDrinking water disinfection by-products (DBPs) are generated by the chemical disinfection of water and may pose hazards to public health. Two major classes of DBPs are found in finished drinking water: haloacetic acids (HAAs) and trihalomethanes (THMs). HAAs are formed following disinfection with chlorine, which reacts with iodide and bromide in the water. Previously the HAAs were shown to be cytotoxic, genotoxic, mutagenic, teratogenic and carcinogenic. OBJECTIVES: To determine the effect of HAAs in human somatic and germ cells and whether oxidative stress is involved in genotoxic action. In the present study both somatic and germ cells have been examined as peripheral blood lymphocytes and sperm. The effects of three HAA compounds: iodoacetic acid (IAA), bromoacetic acid (BAA) and chloroacetic acid (CAA) were investigated. After determining appropriate concentration responses, oxygen radical involvement with the antioxidants, butylated hydroxanisole (BHA) and the enzyme catalase, were investigated in the single cell gel electrophoresis (Comet) assay under alkaline conditions, >pH 13 and the micronucleus assay. In the Comet assay, BHA and catalase were able to reduce DNA damage in each cell type compared to HAA alone. In the micronucleus assay, micronuclei (MNi) were found in peripheral lymphocytes exposed to all three HAAs and catalase and BHA were in general, able to reduce MNi induction, suggesting oxygen radicals play a role in both assays. These observations are of concern to public health since both human somatic and germ cells show similar genotoxic responses
Safety and efficacy of non-steroidal anti-inflammatory drugs to reduce ileus after colorectal surgery
Background: Ileus is common after elective colorectal surgery, and is associated with increased adverse events and prolonged hospital stay. The aim was to assess the role of non-steroidal anti-inflammatory drugs (NSAIDs) for reducing ileus after surgery. Methods: A prospective multicentre cohort study was delivered by an international, student- and trainee-led collaborative group. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The primary outcome was time to gastrointestinal recovery, measured using a composite measure of bowel function and tolerance to oral intake. The impact of NSAIDs was explored using Cox regression analyses, including the results of a centre-specific survey of compliance to enhanced recovery principles. Secondary safety outcomes included anastomotic leak rate and acute kidney injury. Results: A total of 4164 patients were included, with a median age of 68 (i.q.r. 57\u201375) years (54\ub79 per cent men). Some 1153 (27\ub77 per cent) received NSAIDs on postoperative days 1\u20133, of whom 1061 (92\ub70 per cent) received non-selective cyclo-oxygenase inhibitors. After adjustment for baseline differences, the mean time to gastrointestinal recovery did not differ significantly between patients who received NSAIDs and those who did not (4\ub76 versus 4\ub78 days; hazard ratio 1\ub704, 95 per cent c.i. 0\ub796 to 1\ub712; P = 0\ub7360). There were no significant differences in anastomotic leak rate (5\ub74 versus 4\ub76 per cent; P = 0\ub7349) or acute kidney injury (14\ub73 versus 13\ub78 per cent; P = 0\ub7666) between the groups. Significantly fewer patients receiving NSAIDs required strong opioid analgesia (35\ub73 versus 56\ub77 per cent; P < 0\ub7001). Conclusion: NSAIDs did not reduce the time for gastrointestinal recovery after colorectal surgery, but they were safe and associated with reduced postoperative opioid requirement