17 research outputs found

    Optimization of simultaneous production of waste cooking oil based-biodiesel using iron-manganese doped zirconia-supported molybdenum oxide nanopeprintss catalyst

    Get PDF
    Biodiesel derived from simultaneous esterification and transesterification of waste cooking oil has been attracting consideration as a replacement green fuel for diesel fuels, as it is economically feasible and circumvents the issue of energy versus food, which is estimated to take place with current biodiesel production techniques. In this optimization study, iron-manganese doped zirconia-supported molybdenum oxide catalyst has been prepared and used in the synthesis of waste cooking oil based biodiesel by a simultaneous esterification and transesterification method. The catalyst is prepared via an impregnation method and consequently characterized by XRD, TEM, TGA (thermogravimetric analysis), TPD-NH3, and Brunauer–Emmer–Teller (BET) techniques. The simultaneous process for biodiesel production has been assessed and improved statistically via response surface methodology in combination with the central composite design. It has been established that the process for synthesis of waste cooking oil based biodiesel achieved about 96.8% biodiesel yield at a best condition of 200 °C, waste cooking oil/ methanol molar ratio of 1:30 and 5.0 wt. % as loading of the catalyst. The highest ester yield of 96.8% has been obtained due to the improved physicochemical properties of zirconia-supported molybdenum oxide catalyst which accesses diffusion of the reactants to the active sites

    The effect of sulfate contents on the surface properties of iron–manganese doped sulfated zirconia catalysts

    Get PDF
    The iron–manganese doped sulfated zirconia catalysts were prepared via precipitation method; the sulfation was carried out by impregnation with different amounts of sulfate (4%, 10% and 16% SO4− 2 by weight) with the addition of Fe–Mn doped and calcined at 600 °C for 3 h. The prepared catalysts were characterized by TGA-DTA, XRD, BET, FT-IR, TEM, TPD-NH3 and XPS. XRD and BET results revealed that the addition of sulfate imparts special stabilization to the catalytically active tetragonal phase of zirconia. All the iron–manganese doped sulfated zirconia catalysts were found to have strong acid sites, high surface area and small crystallite size

    Synthesis of ferric-manganese doped tungstated zirconia nanoparticles as heterogeneous solid superacid catalyst for biodiesel production from waste cooking oil

    Get PDF
    The solid superacid catalyst ferric-manganese doped tungstated zirconia (FMWZ) nanoparticles was prepared by impregnation reaction followed by calcination at 600°C for 3 hr and had been characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), transmission electron microscopy (TEM), and Brunner-Emmett-Teller (BET) surface area measurement. The transesterification reaction was used to determine the optimum conditions of methanolysis of waste cooking oil with FMWZ nanoparticles as heterogeneous solid superacid catalyst. The reactions variables such as reaction temperatures, catalyst loading, molar ratio of methanol/oil and reusability were also assessed which effects the waste cooking oil methyl esters (WCOME’s) production yield. The catalyst was reused ten times without any loss in activity and maximum yield of 96% was achieved at the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The fuel properties of the WCOME’s were discussed in light of ASTM D6751 biodiesel standard

    Production of biodiesel from mixed waste vegetable oils using Ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst

    Get PDF
    Biodiesel production by simultaneous esterification and transesterification of waste oil with methanol has been studied in a heterogeneous system using solid ferric hydrogen sulphate [Fe (HSO4)3] acid catalyst. The catalyst was prepared by displacement reaction followed by calcination at 400 °C for 3 h. The prepared catalyst was characterized using X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunner-Emmett-Teller surface area measurement (BET), thermal gravimetric analyzer (TGA) and temperature-programmed desorption of NH3 (TPD - NH3). Furthermore, the dependence of the conversion of mixed waste oil on the reactions variables such as the molar ratio of methanol/oil, the amount of catalysts used, reaction temperatures, reusability were also investigated. The catalyst was reused many times with slight loss in activity and the maximum yield of 94.5% was achieved at the optimized conditions of reaction temperature of 205 °C; stirring speed of 350 rpm, 1:15 molar ratio of oil to alcohol and 1% w/w catalyst loading

    Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

    Get PDF
    Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 µg/mL to 500 µg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron–manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions

    Physicochemical characterization and cancer cell antiproliferative effect of silver-doped magnesia nanoparticles

    Get PDF
    Silver-doped magnesia nanoparticles (Ag/MgO) were synthesized using the precipitation method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner-Emmett-Teller (BET) surface area measurements, and dispersive X-ray spectroscopy (EDX). The morphology of Ag/MgO nanoparticles was determined by transmission and scanning electron microscopy, which revealed cuboidal shaped nanoparticles with sizes ranging from 31 to 68 nm and an average size of 43.5 ± 10.6 nm. The anticancer effects of Ag/MgO nanoparticles were evaluated on human colorectal (HT29) and lung adenocarcinoma (A549) cell lines, and their caspase-3, -8, and -9 activities, as well as Bcl-2, Bax, p53, cytochrome C protein expressions were estimated. Ag/MgO nanoparticles showed selective toxicity towards HT29 and A549 cells while remaining relatively innocuous towards the normal human colorectal, CCD-18Co, and lung, MRC-5 cells. The IC50 values of Ag/MgO nanoparticles on the HT29 and A549 cells were found to be 90.2 ± 2.6 and 85.0 ± 3.5 μg/mL, respectively. The Ag/MgO nanoparticles upregulated caspase-3 and -9 activities, downregulated Bcl-2, upregulated Bax and p53 protein expressions in the cancer cells. The morphology of the Ag/MgO nanoparticle treated HT29 and A549 cells was typical of apoptosis, with cell detachment, shrinkage, and membrane blebbing. The results suggest that Ag/MgO nanoparticles induce apoptosis in cancer cells and exhibit potential as a promising anticancer agent.The publication of this article was funded by the Qatar National Library

    Preparation, characterization, in vitro drug release and anti-inflammatory of thymoquinone-loaded chitosan nanocomposite

    Get PDF
    In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1β. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.The publication of this article was funded by the Qatar National Library

    Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    Get PDF
    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2±29.8nm, 0.524 ±0.013, and -60±14mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells

    Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants

    Get PDF
    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods
    corecore