15 research outputs found

    Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies

    Get PDF
    This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization−sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance

    Antidepressive-Like Effect of Aegle marmelos Leaf Extract in Chronic Unpredictable Mild Stress-Induced Depression-Like Behaviour in Rats

    No full text
    Background. Depression is a psychiatric disorder leading to anhedonia and lack of interest and motivation. Depressive symptoms are triggered by stressful life events, and patients with major depression are at significantly increased risk of attempting suicide. The crucial concern in depression treatment with antidepressant medications is that few weeks are required to show the therapeutic effect along with moderate side effects. The use of herbal medications is a new strategy for the treatment of depression which is often based on medicinal plants.Aegle marmelos (L.) Corr. (family: Rutaceae) is reported to have several actions on the central nervous system producing beneficial effects in anxiety, Alzheimer’s disease, Parkinson’s disease, epilepsy, and convulsion. Thus, the current investigation designed to assess the antidepressant activity of the standardized hydroethanolic extract of Aegle marmelos (EAM) leaves in male rats exposed to the chronic unpredictable mild stress (CUMS) paradigm. Methods. Rats were divided in 5 groups. The control group was not subjected to experimental CUMS paradigm, while 4 other groups were subjected to CUMS paradigm to induce depression-like behaviour from day 1 to day 28. Following the CUMS paradigm, 4 groups were divided as CUMS disease control, CUMS+EAM (150 mg/kg, p.o.), CUMS+EAM (300 mg/kg, p.o.), and CUMS+imipramine (15 mg/kg, p.o.), and treatment was given for seven consecutive days to the respective groups (day 29 to day 35). Behavioural parameters such as open field test, forced swim test, sucrose feeding test, and tail suspension test on day 1, day 28, and day 35 were measured, and biochemical parameters such as plasma corticosterone level, serotonergic system (5-HT, 5-HIAA, and 5-HT/5-HIAA), mitochondrial function, and proinflammatory mediators (TNF-α, IL-1β, and IL-6) were estimated in hippocampus (HIP) and prefrontal cortex (PFC) regions of the brain on day 35, after the behavioural observations. On the other hand, phytochemical profile of Aegle marmelos was done. Results. On day 35, EAM (300 mg/kg) significantly reduced the immobility time during the tail suspension test from 208.66±4.72 s to 108.83±4.81 s and forced swim test from 200.16±4.12 s to 148.5±4.58 s. It also enhanced the behavioural parameters in the open field test such as ambulation from 26.5±2.14 to 56.5±1.80, rearing from 8.33±0.71 to 19±0.57, time spent in centre from 9.16±0.9 to 17.16±0.79 s, total distance travelled from 2.36±0.12 to 4.68±0.10 m, and anhedonia in the sucrose feeding test from 109.33±1.08 to 135.83±3.91 mL. The stimulation of the HPA axis resulting elevated corticosterone level caused by CUMS was reduced by EAM (300 mg/kg) from 80.12±2.020 to 48.25±2.407 μg/dL. Furthermore, EAM (300 mg/kg) increase CUMS-induced changes in serotonin (5-HT) level in HIP and PFC from 3.132±0.09586 to 4.518±0.1812 and 4.308±0.1593 to 5.262±0.1014 ng/mg protein, respectively. EAM (300 mg/kg) significantly attenuated the CUMS-induced changes in proinflammatory cytokine production and mitochondrial function in HIP and PFC. One group used to determine the acute toxicity as per OECD-23 standard protocol which resulted that 300 mg/kg EAM has no significant acute toxicity. Total phenolic content and total flavonoid content of standardized hydroalcoholic extract of AM was found 95.024±2.431 and 36.820±3.41, respectively, and additional identification tests showed the presence of alkaloids, tannins, saponins, cardiac glycosides, flavonoids, and terpenoids. Conclusion. On the basis of findings, EAM can be inferred as a potential antidepressant-like effect of this plan in preclinical research

    Synthesis of Quercetin-Loaded Silver Nanoparticles and Assessing Their Anti-Bacterial Potential

    No full text
    The study delves into the multifaceted potential of quercetin (Qu), a phytoconstituent found in various fruits, vegetables, and medicinal plants, in combination with silver nanoparticles (AgNPs). The research explores the synthesis and characterization of AgNPs loaded with Qu and investigates their pharmaceutical applications, particularly focusing on antibacterial properties. The study meticulously evaluates Qu’s identity, and physicochemical properties, reaffirming its suitability for pharmaceutical use. The development of Qu-loaded AgNPs demonstrates their high drug entrapment efficiency, ideal particle characteristics, and controlled drug release kinetics, suggesting enhanced therapeutic efficacy and reduced side effects. Furthermore, the research examines the antibacterial activity of Qu in different solvents, revealing distinct outcomes. Qu, both in methanol and water formulations, exhibits antibacterial activity against Escherichia coli, with the methanol formulation displaying a slightly stronger efficacy. In conclusion, this study successfully synthesizes AgNPs loaded with Qu and highlights their potential as a potent antibacterial formulation. The findings underscore the influence of solvent choice on Qu’s antibacterial properties and pave the way for further research and development in drug delivery systems and antimicrobial agents. This innovative approach holds promise for addressing microbial resistance and advancing pharmaceutical formulations for improved therapeutic outcomes

    Development and Characterization of Terbinafine-Loaded Nanoemulgel for Effective Management of Dermatophytosis

    No full text
    Dermatophytosis, the most prevalent fungal infection, is witnessing a rising incidence annually. To address this challenge, we developed a terbinafine-loaded oil-in-water nanoemulsion (TH-NE) through the aqueous microtitration method. The formulation comprised olive oil (oil phase), Span 80 (surfactant), and propylene glycol (co-surfactant). Pseudo-phase ternary diagrams and thermodynamic studies underscored the stability of TH-NE. Employing the Box–Behnken design (BBD), we optimized TH-NE, which resulted in a remarkable particle size of 28.07 nm ± 0.5, a low polydispersity index (PDI) of 0.1922 ± 0.1, and a substantial negative zeta potential of −41.87 mV ± 1. Subsequently, TH-NE was integrated into a 1.5% carbopol matrix, yielding a nanoemulgel (TH-NEG). Texture analysis of TH-NEG demonstrated a firmness of 168.00 g, a consistency of 229.81 g/s, negative cohesiveness (−83.36 g), and a work of cohesion at −107.02 g/s. In vitro drug release studies revealed an initial burst effect followed by sustained release, with TH-NEG achieving an impressive 88% release over 48 h, outperforming TH-NE (74%) and the marketed formulation (66%). Ex vivo release studies mirrored these results, with TH-NEG (86%) and TH-NE (71%) showcasing sustained drug release in comparison to the marketed formulation (67%). Confocal microscopy illustrated that TH-NEG and TH-NE penetrated to depths of 30 µm and 25 µm, respectively, into the epidermal layer. Furthermore, dermatokinetic studies highlighted the enhanced drug penetration of TH-NEG compared to TH-NE through mouse skin. In summary, our study establishes TH-NEG as a promising carrier for terbinafine in treating dermatophytosis, offering improved drug delivery and sustained release potential

    Extraction, HPTLC Analysis and Antiobesity Activity of <i>Jatropha tanjorensis</i> and <i>Fraxinus micrantha</i> on High-Fat Diet Model in Rats

    No full text
    The accumulation of body fat due to an imbalance between calorie intake and energy expenditure is called obesity. Metabolic syndrome increases the risk of heart disease, type 2 diabetes, and stroke. The purpose of this study was to determine the effect of Jatropha tanjorensis (J.T.) and Fraxinus micrantha (F.M.) leaf extracts on high-fat diet-induced obesity in rats. Normal control, high-fat diet (HFD) control, orlistat standard, and test groups were created using male Albino Wistar rats (n = 6 per group) weighing 190 ± 15 g. Except for the control group, all regimens were administered orally and continued for 6 weeks while on HFD. Evaluation criteria included body weight, food intake, blood glucose, lipid profile, oxidative stress, and liver histology. High-Performance Thin Layer Chromatography (HPTLC) analysis was performed using a solvent system (7:3 hexane: ethyl acetate for sitosterol solution and Jatropha tanjorensis extracts and 6:4 hexane: ethyl acetate: 1 drop of acetic acid for esculetin and Fraxinus micrantha extracts). There were no deaths during the 14 days before the acute toxicity test, indicating that aqueous and ethanolic extracts of both J.T. and F.M. did not produce acute toxicity at any dose (5, 50, 300, and 2000 mg/kg). The ethanolic and aqueous extracts of J.T. and F.M. leaves at 200 and 400 mg/kg/orally showed a reduction in weight gain, feed intake, and significant decreases in serum glucose and lipid profile. As compared to inducer HFD animals, co-treatment of aqueous and ethanolic extract of both J.T. and F.M. and orlistat increased the levels of antioxidant enzymes and decreased lipid peroxidation. The liver’s histological findings showed that the sample had some degree of protection. These results indicate that ethanolic samples of J.T. have antidiabetic potential in diabetic rats fed an HFD. The strong antioxidant potential and restoration of serum lipid levels may be related to this. Co-treatment of samples JTE, JTAQ, FME, FMAQ and orlistat resulted in an increase in antioxidant enzymes and reduction in lipid peroxidation as compared to inducer HFD animals. We report, for the first time, on using these leaves to combat obesity

    Enhancing Osteoporosis Treatment through Targeted Nanoparticle Delivery of Risedronate: In Vivo Evaluation and Bioavailability Enhancement

    No full text
    Risedronate-loaded mPEG-coated hydroxyapatite, thiolated chitosan-based (coated) and non-coated nanoparticles were tested for their potential effects in the treatment of osteoporosis. The prepared nanoparticles were evaluated for their bone-targeting potential by inducing osteoporosis in female Wistar rats via oral administration of Dexona (dexamethasone sodium phosphate). In vivo pharmacokinetic and pharmacodynamic studies were performed on osteoporotic rat models treated with different formulations. The osteoporotic model treated with the prepared nanoparticles indicated a significant effect on bone. The relative bioavailability was enhanced for RIS-HA-TCS-mPEG nanoparticles given orally compared to RIS-HA-TCS, marketed, and API suspension. Biochemical investigations also showed a significant change in biomarker levels, ultimately leading to bone formation/resorption. Micro-CT analysis of bone samples also demonstrated that the RIS-HA-TCS-mPEG-treated group showed the best results compared to other treatment groups. Moreover, the histology of bone treated with RIS-HA-TCS-mPEG showed a marked restoration of the architecture of trabecular bone along with a well-connected bone matrix and narrow inter-trabecular spaces compared to the toxic group. A stability analysis was also carried out according to ICH guidelines (Q1AR2), and it was found that RIS-HA-TCS-mPEG was more stable than RIS-HA-TCS at 25 °C. Thus, the results of present study indicated that mPEG-RIS-HA-TCS has excellent potential for sustained delivery of RIS for the treatment and prevention of osteoporosis, and for minimizing the adverse effects of RIS typically induced via oral administration

    Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of Tramadol and Its Phase I and II Metabolites in Human Urine

    No full text
    Tramadol (TD) has been prescribed frequently in many countries for more than 40 years, but there is a risk of its misuse and trafficking. As a result, drug analysis has numerous legal and socially relevant implications, making it an essential part of modern analytical chemistry. Thus, the method for the detection of TD and its phase I and phase II metabolites in human urine has been developed and validated using a rapid and efficient approach combining liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization. The sample preparation was best performed using dispersive liquid–liquid microextraction. Analysis was performed using an HyPRITY Cl8 column, and isocratic elution with methanol: water (35:65) with 0.2% formic acid was used. TD and its metabolites were detected at 264.2 (TD/M0) with a base peak at 58.2, 250.3758 (M1), 250.3124 (M2), 236.3976 (M3), 222.5361 (M4), and 236.4475 (M5) m/z peaks. TD showed linearity between 0.1 and 160 ng/mL (R2 = 0.9981). The accuracy ranged from 95.56 to 100.21% for the three concentration levels, while the between- and within-day RSD ranged from 1.58 to 3.92%. The absolute TD recovery was 96.29, 96.91, and 94.31% for the concentrations of 5, 50, and 150 ng/mL, respectively. TD’s phase I metabolites, M1–5 along with nine phase II metabolites, such as sulfo- and glucurono-conjugated metabolites, oxidative TD derivatives, and sulfo-conjugated metabolites were also identified in the urine samples. The pharmacokinetics and metabolism data given provide information for the design of possible future research disorders, evaluating drug mechanism and neurotoxicity and for the effective application screening of TD

    Enhancement of Cognitive Function by Andrographolide-Loaded Lactose β-Cyclodextrin Nanoparticles: Synthesis, Optimization, and Behavioural Assessment

    No full text
    This study investigates whether Andrographolide-loaded Lactose β-Cyclodextrin (ALN-βCD) nanoparticles enhance cognitive function, particularly spatial learning and memory. The successful conjugation of lactose to β-cyclodextrin was confirmed via 1H NMR spectroscopy, facilitating neuronal cell entry. The solvent evaporation method was used to create the nanoparticles, which were characterised for particle size, PDI, zeta potential, and drug release. The nanoparticles exhibited a size of 247.9 ± 3.2 nm, a PDI of 0.5 ± 0.02, and a zeta potential of 26.8 ± 2.5 mV. FTIR and TEM analyses, along with in vitro drug release and BBB permeability studies, confirmed their stability and efficacy. Behavioural tests, including the Elevated Plus Maze, Y-Maze, Object Recognition, and Locomotor Activity tests, demonstrated significant improvements in memory, motor coordination, and exploration time in the nanoparticle-treated groups. The group treated with ALN-βCD at a dose of 100 mg/kg/p.o. showed superior cognitive performance compared to the group receiving free andrographolides (AG). Biochemical assays indicated a significant reduction in acetylcholinesterase activity and lipid peroxidation, suggesting increased acetylcholine levels and reduced oxidative stress. Histopathological examination showed improved neuronal function without toxicity. The results showed significant improvements (p < 0.001) in memory and cognitive abilities in experimental animals, highlighting the potential of ALN-βCD nanoparticles as a non-invasive treatment for memory loss. These promising findings warrant further exploration through clinical trials
    corecore