12 research outputs found

    Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    Get PDF
    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels

    Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    Get PDF
    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways

    Synergistic Killing of Pathogenic Escherichia Coli Using Camel Lactoferrin from Different Saudi Camel Clans and Various Antibiotics

    No full text
    Current study aimed to analyze the synergistic killing of pathogenic Escherichia coli using camel lactoferrin from different Saudi camel clans and various antibiotics. Methods: using multiple microbiological and protein analysis techniques, the results were shown that the purified camel lactoferrins (cLfs) from different Saudi camel have strong antimicrobial potentials against two strains of E. coli. Although all cLfs were superior relative to human or bovine lactoferrins (hLf or bLf), there was no noticeable difference in the antimicrobial potentials of cLfs from different camel clans. The effects of antibiotics and cLfs were synergistic, indicating the superiority of using cLf-antibiotic combinations against E. coli growth. Since these combinations possessed distinguished synergy profiles, it is likely that they can be used to enhance the low efficacy of antibiotics, as well as to control the problems associated with bacterial resistance. Furthermore, these combinations can reduce the cost of cure of bacterial infections, especially in the developing countries. The analysis of the molecular mechanisms of lactoferrin action revealed that expression of several E. coli proteins was affected by the treatment with these antibacterial factors. Several proteins of different molecular weights interacting with cLf-biotin were found. Scanning and transmission electron microscopy analysis revealed the presence of noticeable morphological changes associated with the treatment of E. coli strains by antibiotic carbenicillin or cLf alone, and in combination. Camel lactoferrin has superior potential killing of E. coli over bovine and human lactoferrin, and this potential can be further synergistically enhanced of cLF is combined with antibiotics

    Bacteriostatic and Bactericidal Activities of Camel Lactoferrins Against \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar \u3cem\u3eTyphi\u3c/em\u3e

    No full text
    Lactoferrin is an iron-binding glycoprotein present in various secretions (e.g., milk, tears, saliva, pancreatic juice), which performs multiple functions, with one of them being the antimicrobial defense. Purified camel lactoferrins (cLfs) from different Saudi camel clans, as well as human and bovine lactoferrins (hLf or bLf) were tested as antimicrobial agents against Salmonella enterica serovar Typhi (S. Typhi). All cLfs showed superior antibacterial potentials relative to hLf or bLf, while there was no noticeable difference in the antimicrobial capabilities between the cLfs from different camel clans. We observed synergy between the inhibitory activities of Lfs and antibiotics against bacterial growth. Expression of numerous bacterial proteins was affected by the treatment with Lf and its combinations, giving insight into the molecular mechanisms of the Lf action. Furthermore, several bacterial proteins were shown to interact with cLf-biotin. Scanning and transmission electron microscopy revealed the presence of obvious extracellular and intracellular changes after S. Typhi treatment by antibiotic (carbenicillin) or cLf alone, and in combination. The effects of antibiotics and Lf were synergistic, supporting the potential of the use of Lf-antibiotic combinations

    Aqueous suspension of anise "Pimpinella an/sum" protects rats against chemically induced gastric ulcers

    No full text
    AIM: To substantiate the claims of Unani and Arabian traditional medicine practitioners on the gastroprotective potential effect of a popular spice anise, "Pimpinella anisum L." on experimentally-induced gastric ulceration and secretion in rats. METHODS: Acute gastric ulceration in rats was produced by various noxious chemicals including 80% ethanol, 0.2 mol/L NaOH, 25% NaCI and indomethacin. Anti-secretory studies were undertaken using pylorusligated Shay rat technique. Levels of gastric non-protein sulfhydryls (NP-SH) and wall mucus were estimated and gastric tissue was also examined histologically. Anise aqueous suspension was used in two doses (250 and 500 mg/kg body weight) in all experiments. RESULTS: Anise significantly inhibited gastric mucosal damage induced by necrotizing agents and indomethacin. The anti-ulcer effect was further confirmed histologically. In pylorus-ligated Shay rats, anise suspension signiQtantly reduced the basal gastric acid secretion, acidity and completely inhibited the rumenal ulceration. On the other hand, the suspension significantly replenished ethanol-induced depleted levels of gastric mucosal NP-SH and gastric wall mucus concentration. CONCLUSION: Anise aqueous suspension possesses signiQtant cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions. The anti-ulcer effect of anise is possibly prostaglandin-mediated and/or seizures and epilepsy . The phytotherapeutic applications of anise are based on its digestive, carminative, diuretic and expectorating action'151. It has been recently reported that the essential oil of anise is highly effective as both larvicidal and ovicidal agents'161. The principal constituents of anise are volatile oil, coumarins, fatty acids, Davonoid glycosides, proteins and carbohydrates. Among others, anise oil contains anethole and caryophyllene'17'. Since we have not come across a scientiDc report on potential gastroprotective claims of anise aqueous suspension, the present study was carried out to assess its effect on chemically induced gastric ulcers in rats

    Effect of Short-Term Use of Different Non-Steroidal Anti-Inflammatory Drugs on Renal Function During Fasting in Ramadan

    No full text
    This study was conducted to determine the combined effect of Ramadan fasting and short-term use of different non-steroidal anti-inflammatory drugs (NSAIDs) on renal function in healthy volunteers. The study subjects were assigned to six different groups, five of whom took different NSAIDs (namely nabumetoce, indotaethacin, diclofenac, sulindac, tenoxicam) and the sixth was a control group. Data were collected on serum sodium, chloride, potassium, urea; creatinine, bicarbonate and uric acid as well as urinary osmolarity, sodium, potassium, chloride and urea. These measurements were taken before fasting, 10 days into fasting while using NSAIDs, and five days after stopping the use of NSAIDs. The results showed slight changes in serum and urine measurements during fasting while using NSAIDs. These changes, although were significant in some cases, were within the normal range and were noted in all the study groups including the control group We conclude that short-term use of NSAIDs in healthy subjects during fasting is not associated with any major adverse effects on the renal function
    corecore