11 research outputs found
Recommended from our members
Generative Adversarial Networks Can Create High Quality Artificial Prostate Cancer Magnetic Resonance Images
The recent integration of open-source data with machine learning models, especially in the medical field, has opened new doors to studying disease progression and/or regression. However, the ability to use medical data for machine learning approaches is limited by the specificity of data for a particular medical condition. In this context, the most recent technologies, like generative adversarial networks (GANs), are being looked upon as a potential way to generate high-quality synthetic data that preserve the clinical variability of a condition. However, despite some success, GAN model usage remains largely minimal when depicting the heterogeneity of a disease such as prostate cancer. Previous studies from our group members have focused on automating the quantitative multi-parametric magnetic resonance imaging (mpMRI) using habitat risk scoring (HRS) maps on the prostate cancer patients in the BLaStM trial. In the current study, we aimed to use the images from the BLaStM trial and other sources to train the GAN models, generate synthetic images, and validate their quality. In this context, we used T2-weighted prostate MRI images as training data for Single Natural Image GANs (SinGANs) to make a generative model. A deep learning semantic segmentation pipeline trained the model to segment the prostate boundary on 2D MRI slices. Synthetic images with a high-level segmentation boundary of the prostate were filtered and used in the quality control assessment by participating scientists with varying degrees of experience (more than ten years, one year, or no experience) to work with MRI images. Results showed that the most experienced participating group correctly identified conventional vs. synthetic images with 67% accuracy, the group with one year of experience correctly identified the images with 58% accuracy, and the group with no prior experience reached 50% accuracy. Nearly half (47%) of the synthetic images were mistakenly evaluated as conventional. Interestingly, in a blinded quality assessment, a board-certified radiologist did not significantly differentiate between conventional and synthetic images in the context of the mean quality of synthetic and conventional images. Furthermore, to validate the usability of the generated synthetic images from prostate cancer MRIs, we subjected these to anomaly detection along with the original images. Importantly, the success rate of anomaly detection for quality control-approved synthetic data in phase one corresponded to that of the conventional images. In sum, this study shows promise that high-quality synthetic images from MRIs can be generated using GANs. Such an AI model may contribute significantly to various clinical applications which involve supervised machine-learning approaches
Recommended from our members
A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI
Background: We developed and validated an integrated radiomic-clinicopathologic nomogram (RadClip) for post-surgical biochemical recurrence free survival (bRFS) and adverse pathology (AP) prediction in men with prostate cancer (PCa). RadClip was further compared against extant prognostics tools like CAPRA and Decipher.
Methods: A retrospective study of 198 patients with PCa from four institutions who underwent pre-operative 3 Tesla MRI followed by radical prostatectomy, between 2009 and 2017 with a median 35-month follow-up was performed. Radiomic features were extracted from prostate cancer regions on bi-parametric magnetic resonance imaging (bpMRI). Cox Proportional-Hazards (CPH) model warped with minimum redundancy maximum relevance (MRMR) feature selection was employed to select bpMRI radiomic features for bRFS prediction in the training set (D1, N = 71). In addition, a bpMRI radiomic risk score (RadS) and associated nomogram, RadClip, were constructed in D1 and then compared against the Decipher, pre-operative (CAPRA), and post-operative (CAPRA-S) nomograms for bRFS and AP prediction in the testing set (D2, N = 127).
Findings: "RadClip yielded a higher C-index (0.77, 95% CI 0.65-0.88) compared to CAPRA (0.68, 95% CI 0.57-0.8) and Decipher (0.51, 95% CI 0.33-0.69) and was found to be comparable to CAPRA-S (0.75, 95% CI 0.65-0.85). RadClip resulted in a higher AUC (0.71, 95% CI 0.62-0.81) for predicting AP compared to Decipher (0.66, 95% CI 0.56-0.77) and CAPRA (0.69, 95% CI 0.59-0.79)."
Interpretation: RadClip was more prognostic of bRFS and AP compared to Decipher and CAPRA. It could help pre-operatively identify PCa patients at low risk of biochemical recurrence and AP and who therefore might defer additional therapy.
Funding: The National Institutes of Health, the U.S. Department of Veterans Affairs, and the Department of Defense.
Keywords: Adverse pathology; Biochemical recurrence; MRI; Prognosis; Prostate cancer; Radiomic
Longitudinal Changes and Predictive Value of Multiparametric MRI Features for Prostate Cancer Patients Treated with MRI-Guided Lattice Extreme Ablative Dose (LEAD) Boost Radiotherapy
We investigated the longitudinal changes in multiparametric MRI (mpMRI) (T2-weighted, Apparent Diffusion Coefficient (ADC), and Dynamic Contrast Enhanced (DCE-)MRI) of prostate cancer patients receiving Lattice Extreme Ablative Dose (LEAD) radiotherapy (RT) and the capability of their imaging features to predict RT outcome based on endpoint biopsies. Ninety-five mpMRI exams from 25 patients, acquired pre-RT and at 3-, 9-, and 24-months post-RT were analyzed. MRI/Ultrasound-fused biopsies were acquired pre- and at two-years post-RT (endpoint). Five regions of interest (ROIs) were analyzed: Gross tumor volume (GTV), normally-appearing tissue (NAT) and peritumoral volume in both peripheral (PZ) and transition (TZ) zones. Diffusion and perfusion radiomics features were extracted from mpMRI and compared before and after RT using two-tailed Student t-tests. Selected features at the four scan points and their differences (Δ radiomics) were used in multivariate logistic regression models to predict the endpoint biopsy positivity. Baseline ADC values were significantly different between GTV, NAT-PZ, and NAT-TZ (p-values < 0.005). Pharmaco-kinetic features changed significantly in the GTV at 3-month post-RT compared to baseline. Several radiomics features at baseline and three-months post-RT were significantly associated with endpoint biopsy positivity and were used to build models with high predictive power of this endpoint (AUC = 0.98 and 0.89, respectively). Our study characterized the RT-induced changes in perfusion and diffusion. Quantitative imaging features from mpMRI show promise as being predictive of endpoint biopsy positivity
Recommended from our members
Integrated framework for quantitative T2-weighted MRI analysis following prostate cancer radiotherapy
The aim of this study is to develop a framework for quantitative analysis of longitudinal T2-weighted MRIs (T2w) following radiotherapy (RT) for prostate cancer.
The developed methodology includes: (i) deformable image registration of longitudinal series to pre-RT T2w for automated detection of prostate, peripheral zone (PZ), and gross tumor volume (GTV); and (ii) T2w signal-intensity harmonization based on three reference tissues. The REgistration and HARMonization (REHARM) framework was applied on T2w acquired in a clinical trial consisting of two pre-RT and three post-RT MRI exams. Image registration was assessed by the DICE coefficient between automatic and manual contours, and intensity normalization via inter-patient histogram intersection. Longitudinal consistency was evaluated by the repeatability coefficient and Pearson correlation (r) between the two T2w exams before RT.
T2w from 107 MRI exams (23 patients) were utilized. Following REHARM, the histogram intersections for prostate, PZ and GTV increased from median = 0.43/0.16/0.13 to 0.66/0.44/0.46. The repeatability in T2w intensity estimation was better for the automatic than the manual contours for all three ROIs (r = 0.9, p < 0.0001, for GTV). The changes in the tissues’ T2w values pre- and post-RT became significant, indicating the measurable quantitative signal related to radiation.
The developed methodology allows to automate longitudinal analysis reducing data acquisition-related variation and improving consistency. The quantitative characterization of RT-induced changes in T2w will lead to new understanding of radiation effects enabling prediction modeling of RT response
Recommended from our members
Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI
The utilization of multi-parametric MRI (mpMRI) in clinical decisions regarding prostate cancer patients’ management has recently increased. After biopsy, clinicians can assess risk using National Comprehensive Cancer Network (NCCN) risk stratification schema and commercially available genomic classifiers, such as Decipher. We built radiomics-based models to predict lesions/patients at low risk prior to biopsy based on an established three-tier clinical-genomic classification system. Radiomic features were extracted from regions of positive biopsies and Normally Appearing Tissues (NAT) on T2-weighted and Diffusion-weighted Imaging. Using only clinical information available prior to biopsy, five models for predicting low-risk lesions/patients were evaluated, based on: 1: Clinical variables; 2: Lesion-based radiomic features; 3: Lesion and NAT radiomics; 4: Clinical and lesion-based radiomics; and 5: Clinical, lesion and NAT radiomic features. Eighty-three mpMRI exams from 78 men were analyzed. Models 1 and 2 performed similarly (Area under the receiver operating characteristic curve were 0.835 and 0.838, respectively), but radiomics significantly improved the lesion-based performance of the model in a subset analysis of patients with a negative Digital Rectal Exam (DRE). Adding normal tissue radiomics significantly improved the performance in all cases. Similar patterns were observed on patient-level models. To the best of our knowledge, this is the first study to demonstrate that machine learning radiomics-based models can predict patients’ risk using combined clinical-genomic classification
Recommended from our members
Uncovering prostate cancer aggressiveness signal in T2-weighted MRI through a three-reference tissues normalization technique
Quantitative T2-weighted MRI (T2W) interpretation is impeded by the variability of acquisition-related features, such as field strength, coil type, signal amplification, and pulse sequence parameters. The main purpose of this work is to develop an automated method for prostate T2W intensity normalization. The procedure includes the following: (i) a deep learning-based network utilizing MASK R-CNN for automatic segmentation of three reference tissues: gluteus maximus muscle, femur, and bladder; (ii) fitting a spline function between average intensities in these structures and reference values; and (iii) using the function to transform all T2W intensities. The T2W distributions in the prostate cancer regions of interest (ROIs) and normal appearing prostate tissue (NAT) were compared before and after normalization using Student's t-test. The ROIs' T2W associations with the Gleason Score (GS), Decipher genomic score, and a three-tier prostate cancer risk were evaluated with Spearman's correlation coefficient (rS ). T2W differences in indolent and aggressive prostate cancer lesions were also assessed. The MASK R-CNN was trained with manual contours from 32 patients. The normalization procedure was applied to an independent MRI dataset from 83 patients. T2W differences between ROIs and NAT significantly increased after normalization. T2W intensities in 231 biopsy ROIs were significantly negatively correlated with GS (rS = -0.21, p = 0.001), Decipher (rS = -0.193, p = 0.003), and three-tier risk (rS = -0.235, p < 0.001). The average T2W intensities in the aggressive ROIs were significantly lower than in the indolent ROIs after normalization. In conclusion, the automated triple-reference tissue normalization method significantly improved the discrimination between prostate cancer and normal prostate tissue. In addition, the normalized T2W intensities of cancer exhibited a significant association with tumor aggressiveness. By improving the quantitative utilization of the T2W in the assessment of prostate cancer on MRI, the new normalization method represents an important advance over clinical protocols that do not include sequences for the measurement of T2 relaxation times
Recommended from our members
A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI.
BackgroundWe developed and validated an integrated radiomic-clinicopathologic nomogram (RadClip) for post-surgical biochemical recurrence free survival (bRFS) and adverse pathology (AP) prediction in men with prostate cancer (PCa). RadClip was further compared against extant prognostics tools like CAPRA and Decipher.MethodsA retrospective study of 198 patients with PCa from four institutions who underwent pre-operative 3 Tesla MRI followed by radical prostatectomy, between 2009 and 2017 with a median 35-month follow-up was performed. Radiomic features were extracted from prostate cancer regions on bi-parametric magnetic resonance imaging (bpMRI). Cox Proportional-Hazards (CPH) model warped with minimum redundancy maximum relevance (MRMR) feature selection was employed to select bpMRI radiomic features for bRFS prediction in the training set (D1, N = 71). In addition, a bpMRI radiomic risk score (RadS) and associated nomogram, RadClip, were constructed in D1 and then compared against the Decipher, pre-operative (CAPRA), and post-operative (CAPRA-S) nomograms for bRFS and AP prediction in the testing set (D2, N = 127).Findings"RadClip yielded a higher C-index (0.77, 95% CI 0.65-0.88) compared to CAPRA (0.68, 95% CI 0.57-0.8) and Decipher (0.51, 95% CI 0.33-0.69) and was found to be comparable to CAPRA-S (0.75, 95% CI 0.65-0.85). RadClip resulted in a higher AUC (0.71, 95% CI 0.62-0.81) for predicting AP compared to Decipher (0.66, 95% CI 0.56-0.77) and CAPRA (0.69, 95% CI 0.59-0.79)."InterpretationRadClip was more prognostic of bRFS and AP compared to Decipher and CAPRA. It could help pre-operatively identify PCa patients at low risk of biochemical recurrence and AP and who therefore might defer additional therapy.FundingThe National Institutes of Health, the U.S. Department of Veterans Affairs, and the Department of Defense
Global economic burden of unmet surgical need for appendicitis
Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially