211 research outputs found

    Fabrication of high-quality-factor photonic crystal microcavities in InAsP/InGaAsP membranes

    Get PDF
    Optical fiber taper waveguides are used to improve the efficiency of room temperature photoluminescence measurements of AlGaAs microdisk resonant cavities with embedded self-assembled InAs quantum dots. As a near-field collection optic, the fiber taper improves the collection efficiency from microdisk lasers by a factor of ∼15–100 times in comparison to conventional normal incidence free-space collection techniques. In addition, the fiber taper can serve as an efficient means for pumping these devices, and initial measurements employing fiber pumping and collection are presented. Implications of this work towards chip-based cavity quantum electrodynamics experiments are discussed

    Experimental demonstration of a high quality factor photonic crystal microcavity

    Full text link
    Sub-threshold measurements of a photonic crystal (PC) microcavity laser operating at 1.3 microns show a linewidth of 0.10 nm, corresponding to a quality factor Q ~ 1.3x10^4. The PC microcavity mode is a donor-type mode in a graded square lattice of air holes, with a theoretical Q ~ 10^5 and mode volume Veff ~ 0.25 cubic half-wavelengths in air. Devices are fabricated in an InAsP/InGaAsP multi-quantum well membrane and are optically pumped at 830 nm. External peak pump power laser thresholds as low as 100 microWatts are also observed

    High-Power Directional Emission from Microlasers with Chaotic Resonators

    Full text link
    High-power and highly directional semiconductor cylinder-lasers based on an optical resonator with deformed cross section are reported. In the favorable directions of the far-field, a power increase of up to three orders of magnitude over the conventional circularly symmetric lasers was obtained. A "bow-tie"-shaped resonance is responsible for the improved performance of the lasers in the higher range of deformations, in contrast to "whispering-gallery"-type modes of circular and weakly deformed lasers. This resonator design, although demonstrated here in midinfrared quantum-cascade lasers, should be applicable to any laser based on semiconductors or other high-refractive index materials.Comment: Removed minor discrepancies with published version in the text and in Fig.

    Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser

    Get PDF
    The identification of the lasing mode within a quantum cascade photonic crystal microcavity laser emitting at λ ~8 µm is presented. The symmetry of the lasing mode is determined by the position of nodal lines within micro-bolometer camera measurements of its polarized spatial distribution. Full three-dimensional finite-difference time-domain simulations are also performed, and the resulting vertically emitted radiation field pattern is seen to follow the experimental results closely

    Quantum Cascade Surface-Emitting Photonic Crystal Laser

    Get PDF
    We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniaturization and tailorable emission properties of this design are potentially important for sensing applications, while electrical pumping can allow new studies of photonic crystal and surface plasmon structures in nonlinear and near-field optics

    Quantum cascade photonic-crystal microlasers

    Get PDF
    We describe the realization of Quantum Cascade photonic-crystal microlasers. Photonic and electronic bandstructure engineering are combined to create a novel Quantum Cascade microcavity laser source. A high-index contrast two-dimensional photonic crystal forms a micro-resonator that provides feedback for laser action and diffracts light vertically from the surface of the semiconductor chip. A top metallic contact is used to form both a conductive path for current injection as well as to provide vertical optical confinement to the active region through a bound surface plasmon state at the metal-semiconductor interface. The device is miniaturized compared to standard Quantum Cascade technology, and the emission properties can in principle be engineered by design of the photonic crystal lattice. The combination of size reduction, vertical emission, and lithographic tailorability of the emission properties enabled by the use of a high-index contrast photonic crystal resonant cavity makes possible a number of active sensing applications in the mid- and far-infrared. In addition, the use of electrical pumping in these devices opens up another dimension of control for fundamental studies of photonic crystal and surface plasmon structures in linear, non-linear, and near-field optics

    Mid-IR quantum cascade lasers and amplifiers: recent developments and applications

    Get PDF
    This talk will give an overview of the most recent results on the realization of new quantum cascade laser devices and the perspective of their innovative applications in the mid-infrared range of the spectrum

    Quantum cascade photonic-crystal microlasers

    Get PDF
    We describe the realization of Quantum Cascade photonic-crystal microlasers. Photonic and electronic bandstructure engineering are combined to create a novel Quantum Cascade microcavity laser source. A high-index contrast two-dimensional photonic crystal forms a micro-resonator that provides feedback for laser action and diffracts light vertically from the surface of the semiconductor chip. A top metallic contact is used to form both a conductive path for current injection as well as to provide vertical optical confinement to the active region through a bound surface plasmon state at the metal-semiconductor interface. The device is miniaturized compared to standard Quantum Cascade technology, and the emission properties can in principle be engineered by design of the photonic crystal lattice. The combination of size reduction, vertical emission, and lithographic tailorability of the emission properties enabled by the use of a high-index contrast photonic crystal resonant cavity makes possible a number of active sensing applications in the mid- and far-infrared. In addition, the use of electrical pumping in these devices opens up another dimension of control for fundamental studies of photonic crystal and surface plasmon structures in linear, non-linear, and near-field optics

    Drosophila muscleblind Codes for Proteins with One and Two Tandem Zinc Finger Motifs

    Get PDF
    Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its normal function, which ultimately leads to mis-spliced mRNAs, a major cause of the disease. Muscleblind-proteins bind to RNAs via N-terminal zinc fingers of the Cys3-His type. These zinc fingers are arranged in one (invertebrates) or two (vertebrates) tandem zinc finger (TZF) motifs with both fingers targeting GC steps in the RNA molecule. Here I show that mbl genes in Drosophila and in other insects also encode proteins with two TZF motifs, highly similar to vertebrate MBNL proteins. In Drosophila the different protein isoforms have overlapping but possibly divergent functions in vivo, evident by their unequal capacities to rescue the splicing defects observed in mbl mutant embryos. In addition, using whole transcriptome analysis, I identified several new splicing targets for Mbl in Drosophila embryos. Two of these novel targets, kkv (krotzkopf-verkehrt, coding for Chitin Synthase 1) and cora (coracle, coding for the Drosophila homolog of Protein 4.1), are not muscle-specific but expressed mainly in epidermal cells, indicating a function for mbl not only in muscles and the nervous system
    • …
    corecore