21 research outputs found

    Parametric downconversion with optimized spectral properties in nonlinear photonic crystals

    Full text link
    We study the joint spectral properties of photon pairs generated by spontaneous parametric down-conversion in a one-dimensional nonlinear photonic crystal in a collinear, degenerate, type-II geometry. We show that the photonic crystal properties may be exploited to compensate for material dispersion and obtain photon pairs that are nearly factorable, in principle, for arbitrary materials and spectral regions, limited by the ability to fabricate the nonlinear crystal with the required periodic variation in the refractive indices for the ordinary and extraordinary waves.Comment: 9 pages, 6 figure

    Generation of Fourier transform limited heralded single photons

    Full text link
    In this paper we study the spectral (temporal) properties of heralded single photon wavepackets, triggered by the detection of an idler photon in the process of parametric downconversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier- transform limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfilment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wavepackets.Comment: 10 pages, 3 figure, PHYSICAL REVIEW A 75, 02381

    Generation of two-photon states with arbitrary degree of entanglement via nonlinear crystal superlattices

    Get PDF
    We demonstrate a general method of engineering the joint quantum state of photon pairs produced in spontaneous parametric downconversion (PDC). The method makes use of a superlattice structure of nonlinear and linear materials, in conjunction with a broadband pump, to manipulate the group delays of the signal and idler photons relative to the pump pulse, and realizes a joint spectral amplitude with arbitrary degree of entanglement for the generated pairs. This method of group delay engineering has the potential of synthesizing a broad range of states including factorizable states crucial for quantum networking and states optimized for Hong-Ou-Mandel interferometry. Experimental results for the latter case are presented, illustrating the principles of this approach.Comment: 4 pages, 4 figures, accepted Phys. Rev. Let

    On the relationship between pump chirp and single-photon chirp in spontaneous parametric downconversion

    Full text link
    We study the chronocyclic character, i.e. the joint temporal and spectral properties, of the single-photon constituents of photon pairs generated by spontaneous parametric down conversion. In particular we study how single photon properties, including purity and single-photon chirp, depend on photon pair properties, including the type of signal-idler spectral and correlations and the level of pump chirp.Comment: 13 pages, 6 figure

    Heralded Generation of Ultrafast Single Photons in Pure Quantum States

    Full text link
    We present an experimental demonstration of heralded single photons prepared in pure quantum states from a parametric downconversion source. It is shown that, through controlling the modal structure of the photon pair emission, one can generate pairs in factorable states and thence eliminate the need for spectral filters in multiple-source interference schemes. Indistinguishable heralded photons were generated in two independent spectrally engineered sources, and, by performing a Hong-Ou-Mandel interference between them without spectral filters at a raw visibility of 94.4%, their purity was measured to be over 95%.Comment: 5 pages, 4 figure

    Ultra-broadband photon pair preparation by spontaneous four wave mixing in dispersion-engineered optical fiber

    Full text link
    We present a study of the spectral properties of photon pairs generated through the process of spontaneous four wave mixing (SFWM) in single mode fiber. Our analysis assumes narrowband pumps, which are allowed to be frequency-degenerate or non-degenerate. Based on this analysis, we derive conditions on the pump frequencies and on the fiber dispersion parameters which guarantee the generation of ultra-broadband photon pairs. Such photon pairs are characterized by: i) a very large degree of entanglement, and ii) a very high degree of temporal synchronization between the signal and idler photons. Through a numerical exercise, we find that the use of photonic crystal fiber (PCF) facilitates the fulfilment of the conditions for ultra-broadband photon pair generation; in particular, the spectral region in which emission occurs can be adjusted to particular needs through an appropriate choice of the PCF parameters. In addition, we present a novel quantum interference effect, resulting from indistinguishable pathways to the same outcome, which can occur when pumping a SFWM source with multiple spectral lines.Comment: 15 pages, 10 figures. To be published in Phys. Rev.

    Characterization of the non-classical nature of conditionally prepared single photons

    Full text link
    A reliable single photon source is a prerequisite for linear optical quantum computation and for secure quantum key distribution. A criterion yielding a conclusive test of the single photon character of a given source, attainable with realistic detectors, is therefore highly desirable. In the context of heralded single photon sources, such a criterion should be sensitive to the effects of higher photon number contributions, and to vacuum introduced through optical losses, which tend to degrade source performance. In this paper we present, theoretically and experimentally, a criterion meeting the above requirements.Comment: 4 pages; 3 figure

    Temperature-controlled entangled-photon absorption spectroscopy

    Get PDF
    Entangled two-photon absorption spectroscopy (TPA) has been widely recognized as a powerful tool for revealing relevant information about the structure of complex molecular systems. However, to date, the experimental implementation of this technique has remained elusive, mainly because of two major difficulties: first, the need to perform multiple experiments with two-photon states bearing different temporal correlations, which translates into the necessity to have at the experimenter’s disposal tens, if not hundreds, of sources of entangled photons; second, the need to have a priori knowledge of the absorbing medium’s lowest-lying intermediate energy level. In this work, we put forward a simple experimental scheme that successfully overcomes these two limitations. By making use of a temperature-controlled entangled-photon source, which allows the tuning of the central frequencies of the absorbed photons, we show that the TPA signal, measured as a function of the temperature of the nonlinear crystal that generates the paired photons, and a controllable delay between them, carries all information about the electronic level structure of the absorbing medium, which can be revealed by a simple Fourier transformation.Peer ReviewedPostprint (author's final draft

    Generation of correlated photons in controlled spatial modes by down-conversion in nonlinear waveguides

    Full text link
    We report the observation of correlated photon pairs generated by spontaneous parametric down-conversion in a quasi-phase matched KTiOPO4 nonlinear waveguide. The highest ratio of coincidence to single photon count rates observed in the 830 nm wavelength region exceeds 18%. This makes nonlinear waveguides a promising source of correlated photons for metrology and quantum information processing applications. We also discuss possibilities of controlling the spatial characteristics of the down-converted photons produced in multimode waveguide structures.Comment: 4 pages, REVTe
    corecore