2,782 research outputs found

    Illuminating Dense Quark Matter

    Get PDF
    We imagine shining light on a lump of cold dense quark matter, in the CFL phase and therefore a transparent insulator. We calculate the angles of reflection and refraction, and the intensity of the reflected and refracted light. Although the only potentially observable context for this phenomenon (reflection of light from and refraction of light through an illuminated quark star) is unlikely to be realized, our calculation casts new light on the old idea that confinement makes the QCD vacuum behave as if filled with a condensate of color-magnetic monopoles.Comment: 4 pages, 1 figur

    One-Loop Self Energy and Renormalization of the Speed of Light for some Anisotropic Improved Quark Actions

    Get PDF
    One-loop corrections to the fermion rest mass M_1, wave function renormalization Z_2 and speed of light renormalization C_0 are presented for lattice actions that combine improved glue with clover or D234 quark actions and keep the temporal and spatial lattice spacings, a_t and a_s, distinct. We explore a range of values for the anisotropy parameter \chi = a_s/a_t and treat both massive and massless fermions.Comment: 45 LaTeX pages with 4 postscript figure

    Color-Neutral Superconducting Quark Matter

    Full text link
    We investigate the consequences of enforcing local color neutrality on the color superconducting phases of quark matter by utilizing the Nambu-Jona-Lasinio model supplemented by diquark and the t'Hooft six-fermion interactions. In neutrino free matter at zero temperature, color neutrality guarantees that the number densities of u, d, and s quarks in the Color-Flavor-Locked (CFL) phase will be equal even with physical current quark masses. Electric charge neutrality follows as a consequence and without the presence of electrons. In contrast, electric charge neutrality in the less symmetric 2-flavor superconducting (2SC) phase with ud pairing requires more electrons than the normal quark phase. The free energy density cost of enforcing color and electric charge neutrality in the CFL phase is lower than that in the 2SC phase, which favors the formation of the CFL phase. With increasing temperature and neutrino content, an unlocking transition occurs from the CFL phase to the 2SC phase with the order of the transition depending on the temperature, the quark and lepton number chemical potentials. The astrophysical implications of this rich structure in the phase diagram, including estimates of the effects from Goldstone bosons in the CFL phase, are discussed.Comment: 20 pages, 4 figures; version to appear in Phys. Rev.

    Bulk viscosity in the nonlinear and anharmonic regime of strange quark matter

    Full text link
    The bulk viscosity of cold, dense three-flavor quark matter is studied as a function of temperature and the amplitude of density oscillations. The study is also extended to the case of two different types of anharmonic oscillations of density. We point several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. We also find that, in most regions of the parameter space, with the exception of the case of a very large amplitude of density oscillations (i.e. 10% and above), nonlinear effects and anharmonicity have a small effect on the interplay of the nonleptonic and semileptonic processes in the bulk viscosity.Comment: 14 pages, 6 figures; v2: Appendix B is omitted, a few new discussions added and some new references adde

    Positioning the Destination Product-Can Regional Tourist Boards Learn from Private Sector Practice?

    Get PDF
    This article examines the role of positioning in the marketing of a tourism destination. The study focuses on the current positioning strategies pursued by the Regional Tourist Boards (RTBs) in England. A recent nationwide consumer research study into short holiday destination choice in the UK revealed that consumers were confused by the regional product message. The evidence suggests that current RTB positioning strategies are failing to keep pace with the constantly evolving needs of the consumer. This article explores the reasons for clearly positioning the destination product and suggests that, although RTBs could learn from marketing strategies employed in other sectors of the tourism industry, there are likely to be organisational and cultural barriers inhibiting this learning curve

    Quark description of nuclear matter

    Full text link
    We discuss the role of an adjoint chiral condensate for color superconducting quark matter. Its presence leads to color-flavor locking in two-flavor quark matter. Color is broken completely as well as chiral symmetry in the two-flavor theory with coexisting adjoint quark-antiquark and antitriplet quark-quark condensates. The qualitative properties of this phase match the properties of ordinary nuclear matter without strange baryons. This complements earlier proposals by Schafer and Wilczek for a quark description of hadronic phases. We show for a class of models with effective four-fermion interactions that adjoint chiral and diquark condensates do not compete, in the sense that simultaneous condensation occurs for sufficiently strong interactions in the adjoint chiral channel.Comment: 15 pages, 3 figure

    Tadpole-improved SU(2) lattice gauge theory

    Get PDF
    A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in Landau gauge. Simulations are done with spatial lattice spacings asa_s in the range of about 0.1--0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/asa_t/a_s (where ata_t is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond tree level.Comment: 14 pages, 7 figures (minor changes to overall scales in Fig.1; typos removed from Eqs. (3),(4),(15); some rewording of Introduction

    Calculation of the Pseudoscalar-Isoscalar Hadronic Current Correlation Functions of the Quark-Gluon Plasma

    Get PDF
    We report the results of calculations of pseudoscalar-isoscalar hadronic current correlators using the Nambu--Jona-Lasinio model and the real-time finite-temperature formalism. Results are presented for the temperatures range 1.2 ≀T/Tc≀\leq T/T_c\leq 6.0, where TcT_c is the temperature of the confinement-deconfinement transition, which we take to be Tc=170T_c=170 MeV. Two important resonant features are seen in our calculations. In order to understand the origin of these resonances, we have performed relativistic random phase approximation (RPA)calculations of the temperature-dependent spectrum of the η\eta mesons for T<TcT<T_c. For the RPA calculations, use is made of a simple model in which we introduce temperature- dependent constituent quark masses calculated in a mean-field approximation and a temperature-dependent confining interaction whose form is motivated by recent studies made using lattice simulations of QCD with dynamical quarks. We also introduce temperature-dependent coupling constants in our generalized NJL model. Our motivation in the latter case is the simulation of the approach to a weakly interacting system at high temperatures. We present some evidence that supports our use of temperature-dependent coupling constants for the NJL model. We suggest that our results may be of interest to researchers who use lattice simulations of QCD to obtain temperature dependent spectral functions for various hadronic current correlation functions.Comment: 20 pages, 10 figures, Revtex

    Prediction of the functional properties of ceramic materials from composition using artificial neural networks

    Get PDF
    We describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied here include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric materials are of interest in telecommunication applications where they are used in tuning and filtering equipment. Ionic and mixed conductors are the subjects of a concerted effort in the search for new materials that can be incorporated into efficient, clean electrochemical devices of interest in energy production and greenhouse gas reduction applications. Multi-layer perceptron ANNs are trained using the back-propagation algorithm and utilise data obtained from the literature to learn composition-property relationships between the inputs and outputs of the system. The trained networks use compositional information to predict the relative permittivity and oxygen diffusion properties of ceramic materials. The results show that ANNs are able to produce accurate predictions of the properties of these ceramic materials which can be used to develop materials suitable for use in telecommunication and energy production applications

    Color symmetrical superconductivity in a schematic nuclear quark model

    Full text link
    In this note, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. The physical properties of the BCS vacuum (average numbers of quarks of different colors) remain unchanged under an arbitrary color rotation. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle states of two colors, the single particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color-charge is automatically insured. It is found that the groundstate energy of the color symmetrical sector of the Bonn model is well approximated by the average energy of the color symmetrical superconducting state proposed here
    • 

    corecore